avatar

I’ve been struggling with calculating the memory usage for a week. Here’s the case: I got a program that needs to estimate how much memory it may consume during runtime with some predefined inputs, such as the size of images, etc. The problem is that the program is so complicated that nearly no one understands the code fully. Not to mention, there are lots of parallel codes in the program, scaling the memory usage by the dynamic number of threads.

I use Visual Studio when I work at the company. Visual Studio does provide a better coding experience on the Windows platform. But honestly, the majority of the coding at the company is just bug fixing, which is less enjoyable.

I used to do all scientific computing work on Jupyter notebooks. My most common way of debugging was print, which is definitely not the best way to do so.

The Fourier transform decomposes a function into different frequency components, which can be summed to represent the original function.

出于工作需要,我要开始系统学习c++了。目前我的主力台式机是Linux系统,最常用的编辑器是VS Code,所以想要得到一个比较完整的C/C++工程方案,似乎学习Makefile的相关规则是必不可少的。

我经常会在线性代数教材以及论坛讨论中看到不建议使用逆矩阵A1\mathbf{A}^{-1}来求解线性方程Ax=b\mathbf{A}\mathbf{x}=\mathbf{b},尽管我一直遵循这样的原则(实践中逆矩阵确实不够稳定),但仍然不明白不使用逆矩阵的理由。本文总结了我在网上看到的一些关于逆矩阵的讨论,希望能解释为什么要少用逆矩阵来求解线性方程。

矩阵微分和矩阵求导几乎是求解优化问题不可避免的必学内容,这一方面的内容老实说我很难完全掌握。这里记录一下一些常用的矩阵微分求导的规范和技巧。

主成分分析(Principle Component Analysis,PCA)是常用的一种矩阵分解算法,PCA通过旋转原始空间来使得数据在各个正交轴上的投影最大,通过选择前几个正交轴可以实现数据降维的目的。

从2019年到2022年,manjaro发行版渡过了我的整个博士生涯。最近毕业重新装了系统,依然选择了最新的manjaro KDE Plasma 21.2.4(本来装了arch,大小问题不断被劝退了😜)。基本上这台linux主机要跟着我进入人生下一阶段,作为主力台式机也不打算再折腾了。安装过程中有一些新的学习体会(坑),在这里更新记录一下,希望能帮到有需要的朋友~