The Fourier transform decomposes a function into different frequency components, which can be summed to represent the original function.
Fourier Series TL;DR Any continuous periodic function can be represented by Fourier series, where Fourier coefficients are the weighted integrals of the periodic function over one period. Definition A periodic function f T ( x ) f_{T}(x) f T ( x ) with a period T T T can be decomposed into the following exponential form:
f T ( x ) = ∑ n = − ∞ ∞ c n e i 2 π n x T \begin{equation} f_{T}(x) = \sum_{n=-\infty}^{\infty} c_n e^{i 2\pi n \frac{x}{T}} \end{equation} f T ( x ) = n = − ∞ ∑ ∞ c n e i 2 πn T x
where c n c_n c n are Fourier coefficients:
c n = 1 T ∫ T f T ( x ) e − i 2 π n x T d x \begin{equation} c_n = \frac{1}{T} \int_{T} f_{T}(x) e^{-i 2\pi n \frac{x}{T}} dx \end{equation} c n = T 1 ∫ T f T ( x ) e − i 2 πn T x d x
TL;DR The Fourier transform works for both periodic and non-periodic continuous functions. The Fourier transform is a special case of the Fourier series when the period goes to infinity. The Fourier transform of a periodic function is a summation of weighted delta functions at specific frequencies (harmonics of 1 / T 1/T 1/ T ), where the weights are the Fourier coefficients. Definition For any integrable real-valued function f : R → C f: \mathbb{R} \rightarrow \mathbb{C} f : R → C , the Fourier transform is defined as:
f ^ ( k ) = ∫ − ∞ ∞ f ( x ) e − i 2 π k x d x \begin{equation} \hat{f}(k) = \int_{-\infty}^{\infty} f(x) e^{-i 2\pi k x} dx \end{equation} f ^ ( k ) = ∫ − ∞ ∞ f ( x ) e − i 2 πk x d x
where k ∈ R k \in \mathbb{R} k ∈ R represents continuous frequencies. For example, if x x x is measured in seconds, then frequency is in hertz. The Fourier transform is able to represent periodic and non-periodic functions, whereas the Fourier series only works for periodic functions.
The inverse Fourier transform is defined as:
f ( x ) = ∫ − ∞ ∞ f ^ ( k ) e i 2 π x k d k \begin{equation} f(x) = \int_{-\infty}^{\infty} \hat{f}(k) e^{i 2\pi x k} dk \end{equation} f ( x ) = ∫ − ∞ ∞ f ^ ( k ) e i 2 π x k d k
f ( x ) f(x) f ( x ) and f ^ ( k ) \hat{f}(k) f ^ ( k ) are often referred to as a Fourier transform pair . Here, we use F \mathcal{F} F and F − 1 \mathcal{F}^{-1} F − 1 to denote the Fourier transform (FT) and inverse Fourier transform (iFT), respectively.
Sign of Fourier transform Remember the sign used in Fourier transform and inverse Fourier transform is just a convention. Mathematicians usually choose a negative sign for the inverse Fourier transform while engineers stuck to a positive sign for it. It is not that one is better than the other. The consistency is the key , otherwise errors and confusions may arise.
Connection to Fourier Series Only periodic signals could be decomposed with Fourier series, what about non-periodic signals? We would see that Fourier transform is actually Fourier series when T T T goes to the infinity, meaning there is non-periodic signals.
f ( x ) = lim T → ∞ f T ( x ) = lim T → ∞ ∑ n = − ∞ ∞ c n e i 2 π n x T = lim T → ∞ ∑ n = − ∞ ∞ [ 1 T ∫ T f T ( x ) e − i 2 π n x T d x ] e i 2 π n x T = lim Δ f n → 0 ∑ n = − ∞ ∞ [ ∫ − T / 2 T / 2 f T ( x ) e − i 2 π k n x d x ] e i 2 π x k n Δ k n , k n = n T Δ k n = 1 T = ∫ − ∞ ∞ [ ∫ − ∞ ∞ f ( x ) e − i 2 π k x d x ] e i 2 π x k d k = ∫ − ∞ ∞ f ^ ( k ) e i 2 π x k d k \begin{equation} \begin{split} f(x) &= \lim_{T \rightarrow \infty} f_T(x)\\ &= \lim_{T \rightarrow \infty} \sum_{n=-\infty}^{\infty} c_n e^{i 2\pi n \frac{x}{T}}\\ &= \lim_{T \rightarrow \infty} \sum_{n=-\infty}^{\infty} \left[ \frac{1}{T} \int_{T} f_{T}(x) e^{-i 2\pi n \frac{x}{T}} dx \right] e^{i 2\pi n \frac{x}{T}}\\ &= \lim_{\Delta{f_n} \rightarrow 0} \sum_{n=-\infty}^{\infty} \left[ \int_{-T/2}^{T/2} f_{T}(x) e^{-i 2\pi k_n x} dx \right] e^{i 2\pi x k_n} \Delta{k_n},\ k_n = \frac{n}{T}\ \Delta{k_n}=\frac{1}{T}\\ &= \int_{-\infty}^{\infty} \left[ \int_{-\infty}^{\infty} f(x) e^{-i 2\pi k x} dx \right] e^{i 2\pi x k} dk\\ &= \int_{-\infty}^{\infty} \hat{f}(k) e^{i 2\pi x k} dk \end{split} \end{equation} f ( x ) = T → ∞ lim f T ( x ) = T → ∞ lim n = − ∞ ∑ ∞ c n e i 2 πn T x = T → ∞ lim n = − ∞ ∑ ∞ [ T 1 ∫ T f T ( x ) e − i 2 πn T x d x ] e i 2 πn T x = Δ f n → 0 lim n = − ∞ ∑ ∞ [ ∫ − T /2 T /2 f T ( x ) e − i 2 π k n x d x ] e i 2 π x k n Δ k n , k n = T n Δ k n = T 1 = ∫ − ∞ ∞ [ ∫ − ∞ ∞ f ( x ) e − i 2 πk x d x ] e i 2 π x k d k = ∫ − ∞ ∞ f ^ ( k ) e i 2 π x k d k
and that is exactly Fourier transform (note the definition of integral above).
Properties Linearity For any complex numbers a a a and b b b , if h ( x ) = a f ( x ) + b g ( x ) h(x)=af(x)+bg(x) h ( x ) = a f ( x ) + b g ( x ) , then h ^ ( k ) = f ^ ( k ) + g ^ ( k ) \hat{h}(k) = \hat{f}(k) + \hat{g}(k) h ^ ( k ) = f ^ ( k ) + g ^ ( k ) .
Time Shifting For any real number x 0 x_0 x 0 , if h ( x ) = f ( x − x 0 ) h(x)=f(x-x_0) h ( x ) = f ( x − x 0 ) , then h ^ ( k ) = e − i 2 π x 0 k f ^ ( k ) \hat{h}(k)=e^{-i 2\pi x_0 k} \hat{f}(k) h ^ ( k ) = e − i 2 π x 0 k f ^ ( k ) .
F [ h ( x ) ] = ∫ − ∞ ∞ f ( x − x 0 ) e − i 2 π k x d x = ∫ − ∞ ∞ f ( x ^ ) e − i 2 π k ( x ^ + x 0 ) d ( x ^ + x 0 ) = e − i 2 π x 0 k ∫ − ∞ ∞ f ( x ^ ) e − i 2 π k x ^ d x ^ = e − i 2 π x 0 k f ^ ( k ) \begin{equation} \begin{split} \mathcal{F}\left[h(x)\right] &= \int_{-\infty}^{\infty} f(x-x_0) e^{-i 2\pi k x} dx\\ &= \int_{-\infty}^{\infty} f(\hat{x}) e^{-i 2\pi k (\hat{x}+x_0)} d(\hat{x}+x_0)\\ &= e^{-i 2\pi x_0 k} \int_{-\infty}^{\infty} f(\hat{x}) e^{-i 2\pi k \hat{x}} d\hat{x}\\ &= e^{-i 2\pi x_0 k} \hat{f}(k) \end{split} \end{equation} F [ h ( x ) ] = ∫ − ∞ ∞ f ( x − x 0 ) e − i 2 πk x d x = ∫ − ∞ ∞ f ( x ^ ) e − i 2 πk ( x ^ + x 0 ) d ( x ^ + x 0 ) = e − i 2 π x 0 k ∫ − ∞ ∞ f ( x ^ ) e − i 2 πk x ^ d x ^ = e − i 2 π x 0 k f ^ ( k )
Frequency Shifting For any real number k 0 k_0 k 0 , if h ^ ( k ) = f ^ ( k − k 0 ) \hat{h}(k) = \hat{f}(k-k_0) h ^ ( k ) = f ^ ( k − k 0 ) , then h ( x ) = e i 2 π k 0 x f ( x ) h(x)=e^{i 2 \pi k_0 x} f(x) h ( x ) = e i 2 π k 0 x f ( x ) .
F − 1 [ h ^ ( k ) ] = ∫ − ∞ ∞ f ^ ( k − k 0 ) e i 2 π x k d k = ∫ − ∞ ∞ f ^ ( k ^ ) e i 2 π x ( k ^ + k 0 ) d ( k ^ + k 0 ) = e i 2 π k 0 x ∫ − ∞ ∞ f ^ ( k ^ ) e i 2 π x k ^ d k ^ = e i 2 π k 0 x f ( x ) \begin{equation} \begin{split} \mathcal{F}^{-1}\left[\hat{h}(k)\right] &= \int_{-\infty}^{\infty} \hat{f}(k-k_0) e^{i 2\pi x k} dk\\ &= \int_{-\infty}^{\infty} \hat{f}(\hat{k}) e^{i 2\pi x(\hat{k}+k_0)} d(\hat{k}+k_0)\\ &= e^{i 2\pi k_0 x} \int_{-\infty}^{\infty} \hat{f}(\hat{k}) e^{i 2\pi x\hat{k}} d\hat{k}\\ &= e^{i 2\pi k_0 x} f(x) \end{split} \end{equation} F − 1 [ h ^ ( k ) ] = ∫ − ∞ ∞ f ^ ( k − k 0 ) e i 2 π x k d k = ∫ − ∞ ∞ f ^ ( k ^ ) e i 2 π x ( k ^ + k 0 ) d ( k ^ + k 0 ) = e i 2 π k 0 x ∫ − ∞ ∞ f ^ ( k ^ ) e i 2 π x k ^ d k ^ = e i 2 π k 0 x f ( x )
Scale Property For any real number a a a , if h ( x ) = f ( a x ) h(x)=f(ax) h ( x ) = f ( a x ) , then h ^ ( k ) = 1 ∣ a ∣ f ^ ( k a ) \hat{h}(k)=\frac{1}{|a|}\hat{f}(\frac{k}{a}) h ^ ( k ) = ∣ a ∣ 1 f ^ ( a k ) . Let’s assuming a > 0 a \gt 0 a > 0 :
F [ h ( x ) ] = ∫ − ∞ ∞ f ( a x ) e − i 2 π k x d x = ∫ − ∞ ∞ f ( x ^ ) e − i 2 π k ( x ^ / a ) d ( x ^ / a ) = 1 a ∫ − ∞ ∞ f ( x ^ ) e − i 2 π ( k / a ) x ^ d x ^ = 1 a f ^ ( k a ) \begin{equation} \begin{split} \mathcal{F}\left[h(x)\right] &= \int_{-\infty}^{\infty} f(ax) e^{-i 2\pi k x} dx\\ &= \int_{-\infty}^{\infty} f(\hat{x}) e^{-i 2\pi k (\hat{x}/a)} d(\hat{x}/a)\\ &= \frac{1}{a} \int_{-\infty}^{\infty} f(\hat{x}) e^{-i 2\pi (k / a) \hat{x}} d\hat{x}\\ &= \frac{1}{a} \hat{f}(\frac{k}{a}) \end{split} \end{equation} F [ h ( x ) ] = ∫ − ∞ ∞ f ( a x ) e − i 2 πk x d x = ∫ − ∞ ∞ f ( x ^ ) e − i 2 πk ( x ^ / a ) d ( x ^ / a ) = a 1 ∫ − ∞ ∞ f ( x ^ ) e − i 2 π ( k / a ) x ^ d x ^ = a 1 f ^ ( a k )
and if a < 0 a \lt 0 a < 0 :
F [ h ( x ) ] = ∫ − ∞ ∞ f ( a x ) e − i 2 π k x d x = ∫ ∞ − ∞ f ( x ^ ) e − i 2 π k ( x ^ / a ) d ( x ^ / a ) = 1 − a ∫ − ∞ ∞ f ( x ^ ) e − i 2 π ( k / a ) x ^ d x ^ = 1 − a F ( k a ) \begin{equation} \begin{split} \mathcal{F}\left[h(x)\right] &= \int_{-\infty}^{\infty} f(ax) e^{-i 2\pi k x} dx\\ &= \int_{\infty}^{-\infty} f(\hat{x}) e^{-i 2\pi k (\hat{x}/a)} d(\hat{x}/a)\\ &= \frac{1}{-a} \int_{-\infty}^{\infty} f(\hat{x}) e^{-i 2\pi (k/ a) \hat{x}} d\hat{x}\\ &= \frac{1}{-a} F(\frac{k}{a}) \end{split} \end{equation} F [ h ( x ) ] = ∫ − ∞ ∞ f ( a x ) e − i 2 πk x d x = ∫ ∞ − ∞ f ( x ^ ) e − i 2 πk ( x ^ / a ) d ( x ^ / a ) = − a 1 ∫ − ∞ ∞ f ( x ^ ) e − i 2 π ( k / a ) x ^ d x ^ = − a 1 F ( a k )
Time Convolution Theorem For Fourier transform pairs f ( x ) ↔ f ^ ( k ) f(x) \leftrightarrow \hat{f}(k) f ( x ) ↔ f ^ ( k ) and g ( x ) ↔ g ^ ( k ) g(x) \leftrightarrow \hat{g}(k) g ( x ) ↔ g ^ ( k ) , we have:
F [ f ( x ) ∗ g ( x ) ] = ∫ − ∞ ∞ ∫ − ∞ ∞ f ( τ ) g ( x − τ ) d τ e − i 2 π k x d x = ∫ − ∞ ∞ ∫ − ∞ ∞ g ( x − τ ) e − i 2 π k x d x f ( τ ) d τ = ∫ − ∞ ∞ ∫ − ∞ ∞ g ( x ^ ) e − i 2 π k ( x ^ + τ ) d ( x ^ + τ ) f ( τ ) d τ = ∫ − ∞ ∞ ( ∫ − ∞ ∞ g ( x ^ ) e − i 2 π k x ^ d x ^ ) f ( τ ) e − i 2 π k τ d τ = g ^ ( k ) ∫ − ∞ ∞ f ( τ ) e − i 2 π k τ d τ = g ^ ( k ) f ^ ( k ) \begin{equation} \begin{split} \mathcal{F}\left[f(x) \ast g(x)\right] &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\tau)g(x-\tau) d\tau e^{-i 2\pi k x} dx \\ &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x-\tau) e^{-i 2\pi k x} dx f(\tau) d\tau\\ &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(\hat{x}) e^{-i 2\pi k (\hat{x}+\tau)} d(\hat{x}+\tau) f(\tau) d\tau\\ &= \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} g(\hat{x}) e^{-i 2\pi k \hat{x}} d\hat{x}\right) f(\tau) e^{-i 2\pi k \tau} d\tau\\ &= \hat{g}(k) \int_{-\infty}^{\infty} f(\tau) e^{-i 2\pi k \tau} d\tau\\ &= \hat{g}(k) \hat{f}(k) \end{split} \end{equation} F [ f ( x ) ∗ g ( x ) ] = ∫ − ∞ ∞ ∫ − ∞ ∞ f ( τ ) g ( x − τ ) d τ e − i 2 πk x d x = ∫ − ∞ ∞ ∫ − ∞ ∞ g ( x − τ ) e − i 2 πk x d x f ( τ ) d τ = ∫ − ∞ ∞ ∫ − ∞ ∞ g ( x ^ ) e − i 2 πk ( x ^ + τ ) d ( x ^ + τ ) f ( τ ) d τ = ∫ − ∞ ∞ ( ∫ − ∞ ∞ g ( x ^ ) e − i 2 πk x ^ d x ^ ) f ( τ ) e − i 2 πk τ d τ = g ^ ( k ) ∫ − ∞ ∞ f ( τ ) e − i 2 πk τ d τ = g ^ ( k ) f ^ ( k )
Frequency Convolution Theorem For Fourier transform pairs f ( x ) ↔ f ^ ( k ) f(x) \leftrightarrow \hat{f}(k) f ( x ) ↔ f ^ ( k ) and g ( x ) ↔ g ^ ( k ) g(x) \leftrightarrow \hat{g}(k) g ( x ) ↔ g ^ ( k ) , we have:
F − 1 [ f ^ ( k ) ∗ g ^ ( k ) ] = ∫ − ∞ ∞ ∫ − ∞ ∞ f ^ ( τ ) g ^ ( k − τ ) d τ e i 2 π x k d k = ∫ − ∞ ∞ ∫ − ∞ ∞ g ^ ( k − τ ) e i 2 π x k d k f ^ ( τ ) d τ = ∫ − ∞ ∞ ∫ − ∞ ∞ g ^ ( k ^ ) e i 2 π x ( k ^ + τ ) d ( k ^ + τ ) f ^ ( τ ) d τ = ∫ − ∞ ∞ ( ∫ − ∞ ∞ g ^ ( k ^ ) e i 2 π x k ^ d k ^ ) f ^ ( τ ) e i 2 π x τ d τ = g ( x ) ∫ − ∞ ∞ f ^ ( τ ) e i 2 π x τ d τ = g ( x ) f ( x ) \begin{equation} \begin{split} \mathcal{F}^{-1}\left[\hat{f}(k) \ast \hat{g}(k)\right] &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \hat{f}(\tau) \hat{g}(k-\tau) d\tau e^{i 2\pi x k} dk\\ &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \hat{g}(k-\tau) e^{i 2\pi x k} dk \hat{f}(\tau) d\tau\\ &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \hat{g}(\hat{k}) e^{i 2\pi x (\hat{k}+\tau)} d(\hat{k}+\tau) \hat{f}(\tau) d\tau\\ &= \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} \hat{g}(\hat{k}) e^{i 2\pi x \hat{k}} d\hat{k}\right) \hat{f}(\tau) e^{i 2\pi x \tau} d\tau\\ &= g(x) \int_{-\infty}^{\infty} \hat{f}(\tau) e^{i 2\pi x \tau} d\tau\\ &= g(x) f(x) \end{split} \end{equation} F − 1 [ f ^ ( k ) ∗ g ^ ( k ) ] = ∫ − ∞ ∞ ∫ − ∞ ∞ f ^ ( τ ) g ^ ( k − τ ) d τ e i 2 π x k d k = ∫ − ∞ ∞ ∫ − ∞ ∞ g ^ ( k − τ ) e i 2 π x k d k f ^ ( τ ) d τ = ∫ − ∞ ∞ ∫ − ∞ ∞ g ^ ( k ^ ) e i 2 π x ( k ^ + τ ) d ( k ^ + τ ) f ^ ( τ ) d τ = ∫ − ∞ ∞ ( ∫ − ∞ ∞ g ^ ( k ^ ) e i 2 π x k ^ d k ^ ) f ^ ( τ ) e i 2 π xτ d τ = g ( x ) ∫ − ∞ ∞ f ^ ( τ ) e i 2 π xτ d τ = g ( x ) f ( x )
Conguation F [ f ( x ) ‾ ] = ∫ − ∞ ∞ f ( x ) ‾ e − i 2 π k x d x = ∫ − ∞ ∞ f ( x ) e i 2 π k x d x ‾ = ∫ − ∞ ∞ f ( x ) e − i 2 π ( − k ) x d x ‾ = f ^ ( − k ) ‾ \begin{equation} \begin{split} \mathcal{F}\left[\overline{f(x)}\right] &= \int_{-\infty}^{\infty} \overline{f(x)} e^{-i 2\pi k x} dx \\ &= \overline{ \int_{-\infty}^{\infty} f(x) e^{i 2\pi k x} dx}\\ &= \overline{ \int_{-\infty}^{\infty} f(x) e^{-i 2\pi (-k) x} dx}\\ &= \overline{\hat{f}(-k)} \end{split} \end{equation} F [ f ( x ) ] = ∫ − ∞ ∞ f ( x ) e − i 2 πk x d x = ∫ − ∞ ∞ f ( x ) e i 2 πk x d x = ∫ − ∞ ∞ f ( x ) e − i 2 π ( − k ) x d x = f ^ ( − k )
If f ( x ) f(x) f ( x ) is a real-valued function, then f ^ ( − k ) = f ^ ( k ) ‾ \hat{f}(-k)=\overline{\hat{f}(k)} f ^ ( − k ) = f ^ ( k ) , which is referred to as conjugate symmetric property. If f ( x ) f(x) f ( x ) is an imaginary-valued function, then f ^ ( − k ) = − f ^ ( k ) ‾ \hat{f}(-k)=- \overline{\hat{f}(k)} f ^ ( − k ) = − f ^ ( k ) , which is referred to as conjugate anti-symmetric property. Same properties occur in the inverse Fourier transform.
Common FT Pairs Time Domain Frequency Domain Description 1 1 1 δ ( k ) \delta(k) δ ( k ) δ ( k ) = ∫ − ∞ ∞ e − i 2 π k x d x \delta(k) = \int_{-\infty}^{\infty} e^{-i 2\pi k x} dx δ ( k ) = ∫ − ∞ ∞ e − i 2 πk x d x δ ( x ) \delta(x) δ ( x ) 1 1 1 1 = ∫ − ∞ ∞ δ ( x ) e − i 2 π k x d x 1 = \int_{-\infty}^{\infty} \delta(x) e^{-i 2\pi k x} dx 1 = ∫ − ∞ ∞ δ ( x ) e − i 2 πk x d x s g n ( x ) = { 1 , x > 0 0 , x = 0 − 1 , x < 0 \mathrm{sgn}(x) = \left\{\begin{aligned} 1,x \gt 0\\ 0,x = 0\\-1,x \lt 0\\ \end{aligned}\right. sgn ( x ) = ⎩ ⎨ ⎧ 1 , x > 0 0 , x = 0 − 1 , x < 0 1 / ( i π k ) 1/(i\pi k) 1/ ( iπk ) s g n ( x ) \mathrm{sgn}(x) sgn ( x ) is the sign functionu ( x ) = { 1 , x > 0 1 / 2 , x = 0 0 , x < 0 u(x) = \left\{\begin{aligned} 1,x \gt 0\\ 1/2,x = 0\\0,x \lt 0\\ \end{aligned}\right. u ( x ) = ⎩ ⎨ ⎧ 1 , x > 0 1/2 , x = 0 0 , x < 0 1 2 ( δ ( k ) + 1 / ( i π k ) ) \frac{1}{2}\left(\delta(k) + 1/(i\pi k)\right) 2 1 ( δ ( k ) + 1/ ( iπk ) ) u ( x ) u(x) u ( x ) is the unit step function.u ( x ) = 1 2 ( 1 + s g n ( x ) ) u(x)=\frac{1}{2}(1+\mathrm{sgn}(x)) u ( x ) = 2 1 ( 1 + sgn ( x )) e i a x e^{i a x} e ia x δ ( k − a / ( 2 π ) ) \delta(k-a/(2\pi)) δ ( k − a / ( 2 π )) Frequency Shifting c o s ( a x ) \mathrm{cos}(ax) cos ( a x ) 1 2 ( δ ( k − a / ( 2 π ) ) + δ ( k + a / ( 2 π ) ) ) \frac{1}{2}\left(\delta(k-a/(2\pi)) + \delta(k+a/(2\pi))\right) 2 1 ( δ ( k − a / ( 2 π )) + δ ( k + a / ( 2 π )) ) c o s ( a x ) = 1 2 ( e i a x + e − i a x ) \mathrm{cos}(ax) =\\ \frac{1}{2}(e^{i a x} + e^{-i a x}) cos ( a x ) = 2 1 ( e ia x + e − ia x ) s i n ( a x ) \mathrm{sin}(ax) sin ( a x ) 1 2 ( δ ( k − a / ( 2 π ) ) − δ ( k + a / ( 2 π ) ) ) \frac{1}{2}\left(\delta(k-a/(2\pi)) - \delta(k+a/(2\pi))\right) 2 1 ( δ ( k − a / ( 2 π )) − δ ( k + a / ( 2 π )) ) s i n ( a x ) = 1 2 ( e i a x − e − i a x ) \mathrm{sin}(ax) =\\ \frac{1}{2}(e^{i a x} - e^{-i a x}) sin ( a x ) = 2 1 ( e ia x − e − ia x ) r e c t ( x ) = { 1 , ∣ x ∣ < 1 / 2 1 / 2 , ∣ x ∣ = 1 / 2 0 , ∣ x ∣ > 1 / 2 \mathrm{rect}(x)=\left\{\begin{aligned}1,\lvert x \rvert \lt 1/2\\ 1/2,\lvert x \rvert = 1/2\\ 0,\lvert x \rvert \gt 1/2\end{aligned}\right. rect ( x ) = ⎩ ⎨ ⎧ 1 , ∣ x ∣ < 1/2 1/2 , ∣ x ∣ = 1/2 0 , ∣ x ∣ > 1/2 s i n c ( k ) = s i n ( π k ) / ( π k ) \mathrm{sinc}(k) = \mathrm{sin}(\pi k)/(\pi k) sinc ( k ) = sin ( πk ) / ( πk ) r e c t ( x ) = u ( x + 1 / 2 ) − u ( x − 1 / 2 ) \mathrm{rect}(x) =\\ u(x+1/2)-u(x-1/2) rect ( x ) = u ( x + 1/2 ) − u ( x − 1/2 ) s i n c ( x ) \mathrm{sinc}(x) sinc ( x ) r e c t ( k ) = { 1 , ∣ k ∣ < 1 / 2 1 / 2 , ∣ k ∣ = 1 / 2 0 , ∣ k ∣ > 1 / 2 \mathrm{rect}(k)=\left\{\begin{aligned}1,\lvert k \rvert \lt 1/2\\ 1/2,\lvert k \rvert = 1/2\\ 0,\lvert k \rvert \gt 1/2\end{aligned}\right. rect ( k ) = ⎩ ⎨ ⎧ 1 , ∣ k ∣ < 1/2 1/2 , ∣ k ∣ = 1/2 0 , ∣ k ∣ > 1/2 ∑ n = − ∞ ∞ δ ( x − n Δ x ) \sum_{n=-\infty}^{\infty} \delta(x-n \Delta x) ∑ n = − ∞ ∞ δ ( x − n Δ x ) 1 Δ x ∑ m = − ∞ ∞ δ ( k − m / Δ x ) \frac{1}{\Delta x} \sum_{m=-\infty}^{\infty} \delta(k-m/\Delta x) Δ x 1 ∑ m = − ∞ ∞ δ ( k − m /Δ x ) Comb function
Comb Function A comb function (a.k.a sampling function, sometimes referred to as impulse sampling ) is a periodic function with the formula:
S Δ x ( x ) = ∑ n = − ∞ ∞ δ ( x − n Δ x ) S_{\Delta{x}}(x) = \sum_{n=-\infty}^{\infty} \delta(x-n\Delta{x}) S Δ x ( x ) = n = − ∞ ∑ ∞ δ ( x − n Δ x )
where Δ x \Delta{x} Δ x is the given period. Fourier transform could be extended to [[generalized functions]] like δ ( x ) \delta(x) δ ( x ) , which makes it possible to bypass the limitation of absolute integrable property on f ( x ) f(x) f ( x ) . The key is to decompose periodic functions into Fourier series and use additive property of Fourier transform .
The Fourier transform of S Δ x ( x ) S_{\Delta{x}}(x) S Δ x ( x ) is:
F ( S Δ x ( x ) ) = ∫ − ∞ ∞ ∑ n = − ∞ ∞ δ ( x − n Δ x ) e − i 2 π k x d x = ∑ n = − ∞ ∞ ∫ − ∞ ∞ δ ( x − n Δ x ) e − i 2 π k x d x = ∑ n = − ∞ ∞ e − i 2 π k n Δ x \begin{equation} \begin{split} \mathcal{F}\left(S_{\Delta{x}}(x)\right) &= \int_{-\infty}^{\infty} \sum_{n=-\infty}^{\infty} \delta(x-n\Delta{x}) e^{-i 2\pi k x} dx\\ &= \sum_{n=-\infty}^{\infty} \int_{-\infty}^{\infty} \delta(x-n\Delta{x}) e^{-i 2\pi k x} dx\\ &= \sum_{n=-\infty}^{\infty} e^{-i 2\pi k n \Delta{x}}\\ \end{split} \end{equation} F ( S Δ x ( x ) ) = ∫ − ∞ ∞ n = − ∞ ∑ ∞ δ ( x − n Δ x ) e − i 2 πk x d x = n = − ∞ ∑ ∞ ∫ − ∞ ∞ δ ( x − n Δ x ) e − i 2 πk x d x = n = − ∞ ∑ ∞ e − i 2 πkn Δ x
It is not obvious to see what the transform is, but we can prove it with Fourier series. Note that S Δ x ( x ) S_{\Delta{x}}(x) S Δ x ( x ) is a periodic function, its Fourier series is represented as:
c n = 1 Δ x ∫ Δ x S Δ x ( x ) e − i 2 π n x / Δ x d x = 1 Δ x ∫ − Δ x 2 Δ x 2 ∑ m = − ∞ ∞ δ ( x − m Δ x ) e − i 2 π n x / Δ x d x = 1 Δ x ∫ − Δ x 2 Δ x 2 δ ( x ) e − i 2 π n x / Δ x d x = 1 Δ x ∫ − ∞ ∞ δ ( x ) e − i 2 π n x / Δ x d x = 1 Δ x S Δ x ( x ) = ∑ n = − ∞ ∞ c n e i 2 π n x / Δ x = 1 Δ x ∑ n = − ∞ ∞ e i 2 π n x / Δ x \begin{equation} \begin{split} c_n &= \frac{1}{\Delta{x}} \int_{\Delta{x}} S_{\Delta{x}}(x) e^{-i 2\pi n x / \Delta{x}} dx\\ &= \frac{1}{\Delta{x}} \int_{-\frac{\Delta{x}}{2}}^{\frac{\Delta{x}}{2}} \sum_{m=-\infty}^{\infty} \delta(x-m\Delta{x}) e^{-i 2\pi n x / \Delta{x}} dx\\ &= \frac{1}{\Delta{x}} \int_{-\frac{\Delta{x}}{2}}^{\frac{\Delta{x}}{2}} \delta(x) e^{-i 2\pi n x / \Delta{x}} dx\\ &= \frac{1}{\Delta{x}} \int_{-\infty}^{\infty} \delta(x) e^{-i 2\pi n x / \Delta{x}} dx\\ &= \frac{1}{\Delta{x}}\\ S_{\Delta{x}}(x) &= \sum_{n=-\infty}^{\infty} c_n e^{i 2\pi n x / \Delta{x}}\\ &= \frac{1}{\Delta{x}} \sum_{n=-\infty}^{\infty} e^{i 2\pi n x / \Delta{x}} \end{split} \end{equation} c n S Δ x ( x ) = Δ x 1 ∫ Δ x S Δ x ( x ) e − i 2 πn x /Δ x d x = Δ x 1 ∫ − 2 Δ x 2 Δ x m = − ∞ ∑ ∞ δ ( x − m Δ x ) e − i 2 πn x /Δ x d x = Δ x 1 ∫ − 2 Δ x 2 Δ x δ ( x ) e − i 2 πn x /Δ x d x = Δ x 1 ∫ − ∞ ∞ δ ( x ) e − i 2 πn x /Δ x d x = Δ x 1 = n = − ∞ ∑ ∞ c n e i 2 πn x /Δ x = Δ x 1 n = − ∞ ∑ ∞ e i 2 πn x /Δ x
and Dirac delta function is expressed as:
δ ( x ) = ∫ − ∞ ∞ e i 2 π x k d k = ∫ − ∞ ∞ e − i 2 π x ( − k ) d k = ∫ ∞ − ∞ e − i 2 π x k ^ d ( − k ^ ) = ∫ − ∞ ∞ e − i 2 π x k ^ d ( k ^ ) \begin{equation} \begin{split} \delta(x) &= \int_{-\infty}^{\infty} e^{i 2\pi x k} dk\\ &= \int_{-\infty}^{\infty} e^{-i 2\pi x (-k)} dk\\ &= \int_{\infty}^{-\infty} e^{-i 2\pi x \hat{k}} d(-\hat{k})\\ &= \int_{-\infty}^{\infty} e^{-i 2\pi x \hat{k}} d(\hat{k}) \end{split} \end{equation} δ ( x ) = ∫ − ∞ ∞ e i 2 π x k d k = ∫ − ∞ ∞ e − i 2 π x ( − k ) d k = ∫ ∞ − ∞ e − i 2 π x k ^ d ( − k ^ ) = ∫ − ∞ ∞ e − i 2 π x k ^ d ( k ^ )
Now we can apply Fourier transform to S Δ x ( x ) S_{\Delta{x}}(x) S Δ x ( x ) :
F ( S Δ x ( x ) ) = ∫ − ∞ ∞ ∑ n = − ∞ ∞ c n e i 2 π n x / Δ x e − i 2 π k x d x = 1 Δ x ∑ n = − ∞ ∞ ∫ − ∞ ∞ e i 2 π ( n / Δ x − k ) x d x = 1 Δ x ∑ n = − ∞ ∞ δ ( k − n / Δ x ) \begin{equation} \begin{split} \mathcal{F}\left(S_{\Delta{x}}(x)\right) &= \int_{-\infty}^{\infty} \sum_{n=-\infty}^{\infty} c_n e^{i 2\pi n x / \Delta{x}} e^{-i 2\pi k x} dx\\ &= \frac{1}{\Delta{x}} \sum_{n=-\infty}^{\infty} \int_{-\infty}^{\infty} e^{i 2\pi (n/\Delta{x} - k) x} dx\\ &= \frac{1}{\Delta{x}} \sum_{n=-\infty}^{\infty} \delta({k - n/\Delta{x}}) \end{split} \end{equation} F ( S Δ x ( x ) ) = ∫ − ∞ ∞ n = − ∞ ∑ ∞ c n e i 2 πn x /Δ x e − i 2 πk x d x = Δ x 1 n = − ∞ ∑ ∞ ∫ − ∞ ∞ e i 2 π ( n /Δ x − k ) x d x = Δ x 1 n = − ∞ ∑ ∞ δ ( k − n /Δ x )
so F ( S Δ x ( x ) ) \mathcal{F}\left(S_{\Delta{x}}(x)\right) F ( S Δ x ( x ) ) is also a periodic function with the period as 1 / Δ x 1/\Delta{x} 1/Δ x . Hence, we again apply Fourier series:
c n = Δ x ∫ 1 Δ x F ( S Δ x ( x ) ) e − i 2 π n k Δ x d k = ∫ − 1 2 Δ x 1 2 Δ x ∑ m = − ∞ ∞ δ ( k − m / Δ x ) e − i 2 π n k Δ x d k = ∫ − 1 2 Δ x 1 2 Δ x δ ( k ) e − i 2 π n k Δ x d k = ∫ − ∞ ∞ δ ( k ) e − i 2 π n k Δ x d k = 1 F ( S Δ x ( x ) ) = ∑ n = − ∞ ∞ c n e i 2 π n k Δ x = ∑ n = − ∞ ∞ e i 2 π n k Δ x = ∑ n = − ∞ ∞ e − i 2 π n k Δ x \begin{equation} \begin{split} c_n &= \Delta{x} \int_{\frac{1}{\Delta{x}}} \mathcal{F}\left(S_{\Delta{x}}(x)\right) e^{-i 2\pi n k \Delta{x}} dk\\ &= \int_{-\frac{1}{2\Delta{x}}}^{\frac{1}{2\Delta{x}}} \sum_{m=-\infty}^{\infty} \delta(k-m/\Delta{x}) e^{-i 2\pi n k \Delta{x}} dk\\ &= \int_{-\frac{1}{2\Delta{x}}}^{\frac{1}{2\Delta{x}}} \delta(k) e^{-i 2\pi n k \Delta{x}} dk\\ &= \int_{-\infty}^{\infty} \delta(k) e^{-i 2\pi n k \Delta{x}} dk\\ &= 1\\ \mathcal{F}\left(S_{\Delta{x}}(x)\right) &= \sum_{n=-\infty}^{\infty} c_n e^{i 2\pi n k \Delta{x}}\\ &= \sum_{n=-\infty}^{\infty} e^{i 2\pi n k \Delta{x}}\\ &= \sum_{n=-\infty}^{\infty} e^{-i 2\pi n k \Delta{x}} \end{split} \end{equation} c n F ( S Δ x ( x ) ) = Δ x ∫ Δ x 1 F ( S Δ x ( x ) ) e − i 2 πnk Δ x d k = ∫ − 2Δ x 1 2Δ x 1 m = − ∞ ∑ ∞ δ ( k − m /Δ x ) e − i 2 πnk Δ x d k = ∫ − 2Δ x 1 2Δ x 1 δ ( k ) e − i 2 πnk Δ x d k = ∫ − ∞ ∞ δ ( k ) e − i 2 πnk Δ x d k = 1 = n = − ∞ ∑ ∞ c n e i 2 πnk Δ x = n = − ∞ ∑ ∞ e i 2 πnk Δ x = n = − ∞ ∑ ∞ e − i 2 πnk Δ x
and we can see that why Fourier transform of a comb function is still a comb function.
FT of Periodic Functions With the help of Dirac delta function, Fourier transform could also be used on periodic functions. Considering a periodic function f T ( x ) f_{T}(x) f T ( x ) with period T T T , we can write it as a Fourier series:
f T ( x ) = ∑ n = − ∞ ∞ c n e i 2 π n x / T \begin{equation} f_{T}(x) = \sum_{n=-\infty}^{\infty} c_n e^{i 2\pi n x/T} \end{equation} f T ( x ) = n = − ∞ ∑ ∞ c n e i 2 πn x / T
Let’s compute the Fourier transform:
F ( f T ( x ) ) = ∫ − ∞ ∞ f T ( x ) e − i 2 π k x d x = ∑ n = − ∞ ∞ c n ∫ − ∞ ∞ e i 2 π ( n / T − k ) x d x = ∑ n = − ∞ ∞ c n δ ( n / T − k ) = ∑ n = − ∞ ∞ c n δ ( k − n / T ) \begin{equation} \begin{split} \mathcal{F}(f_T(x)) &= \int_{-\infty}^{\infty} f_T(x) e^{-i 2\pi k x} dx\\ &= \sum_{n=-\infty}^{\infty} c_n \int_{-\infty}^{\infty} e^{i 2\pi (n/T-k) x} dx\\ &= \sum_{n=-\infty}^{\infty} c_n \delta(n/T - k)\\ &= \sum_{n=-\infty}^{\infty} c_n \delta(k - n/T) \end{split} \end{equation} F ( f T ( x )) = ∫ − ∞ ∞ f T ( x ) e − i 2 πk x d x = n = − ∞ ∑ ∞ c n ∫ − ∞ ∞ e i 2 π ( n / T − k ) x d x = n = − ∞ ∑ ∞ c n δ ( n / T − k ) = n = − ∞ ∑ ∞ c n δ ( k − n / T )
so the Fourier transform of a periodic function is a sum of delta functions at the Fourier series frequencies and the weight of each delta function is the Fourier series coefficient , as we proved in the Fourier transform of the comb function.
The inverse Fourier transform is:
F ( ∑ n = − ∞ ∞ c n δ ( k − n / T ) ) = ∫ − ∞ ∞ ∑ n = − ∞ ∞ c n δ ( k − n / T ) e i 2 π x k d k = ∑ n = − ∞ ∞ c n ∫ − ∞ ∞ δ ( k − n / T ) e i 2 π x k d k = ∑ n = − ∞ ∞ c n e i 2 π x n / T = f T ( x ) \begin{equation} \begin{split} \mathcal{F}(\sum_{n=-\infty}^{\infty} c_n \delta(k - n/T)) &= \int_{-\infty}^{\infty} \sum_{n=-\infty}^{\infty} c_n \delta(k - n/T) e^{i 2\pi x k} dk\\ &= \sum_{n=-\infty}^{\infty} c_n \int_{-\infty}^{\infty} \delta(k - n/T) e^{i 2\pi x k} dk\\ &= \sum_{n=-\infty}^{\infty} c_n e^{i 2\pi x n/T}\\ &= f_T(x) \end{split} \end{equation} F ( n = − ∞ ∑ ∞ c n δ ( k − n / T )) = ∫ − ∞ ∞ n = − ∞ ∑ ∞ c n δ ( k − n / T ) e i 2 π x k d k = n = − ∞ ∑ ∞ c n ∫ − ∞ ∞ δ ( k − n / T ) e i 2 π x k d k = n = − ∞ ∑ ∞ c n e i 2 π x n / T = f T ( x )
TL;DR The discrete-time Fourier transform (DTFT) is a special case of the Fourier transform when the original function is sampled. The frequency domain of DTFT is continuous but periodic, with a period of 1 / Δ x 1/\Delta{x} 1/Δ x , where Δ x \Delta{x} Δ x is the sampling interval. The DTFT of periodic sequence is a summation of weighted delta functions. Definition For a discrete sequence of real or complex values f [ n ] f[n] f [ n ] with all integers n n n , the discrete-time Fourier transform is defined as:
f ^ d t f t ( k ) = ∑ n = − ∞ ∞ f [ n ] e − i 2 π n k Δ x \begin{equation} \hat{f}_{dtft}(k) = \sum_{n=-\infty}^{\infty} f[n] e^{-i2\pi n k \Delta{x}} \end{equation} f ^ d t f t ( k ) = n = − ∞ ∑ ∞ f [ n ] e − i 2 πnk Δ x
where 1 Δ x \frac{1}{\Delta{x}} Δ x 1 is the sampling frequency in the time domain. This formula can be seen as a Fourier series (− - − and + + + signs are the same thing) and f ^ d t f t ( k ) \hat{f}_{dtft}(k) f ^ d t f t ( k ) is actually a periodic function with period 1 / Δ x 1/\Delta{x} 1/Δ x .
The inverse discrete-time Fourier transform is defined as:
f [ n ] = Δ x ∫ 1 / Δ x f ^ d t f t ( k ) e i 2 π n k Δ x d k \begin{equation} f[n] = \Delta{x} \int_{1/\Delta{x}} \hat{f}_{dtft}(k) e^{i 2\pi n k \Delta{x}} dk \end{equation} f [ n ] = Δ x ∫ 1/Δ x f ^ d t f t ( k ) e i 2 πnk Δ x d k
note the integral is only evaluated in a period. Here we use F d t f t \mathcal{F}_{dtft} F d t f t to represent the discrete-time Fourier transform (DTFT) and F d t f t − 1 \mathcal{F}_{dtft}^{-1} F d t f t − 1 to represent the inverse discrete-time Fourier transform (iDTFT).
Connection to the FT Modern computers can only handle discrete values instead of continuous signals. The most basic discretization technique is sampling. Considering a continuous function f ( x ) f(x) f ( x ) and an uniform sampling pattern S Δ x ( x ) = ∑ n = − ∞ ∞ δ ( x − n Δ x ) S_{\Delta{x}}(x) = \sum_{n=-\infty}^{\infty} \delta(x-n\Delta{x}) S Δ x ( x ) = ∑ n = − ∞ ∞ δ ( x − n Δ x ) , which is the [[#Comb Function]] we described above, the sampling process can be simulated as:
f S ( x ) = f ( x ) S Δ x ( x ) = ∑ n = − ∞ ∞ f ( x ) δ ( x − n Δ x ) \begin{equation} \begin{split} f_S(x) &= f(x) S_{\Delta{x}}(x)\\ &= \sum_{n=-\infty}^{\infty} f(x)\delta(x-n\Delta{x}) \end{split} \end{equation} f S ( x ) = f ( x ) S Δ x ( x ) = n = − ∞ ∑ ∞ f ( x ) δ ( x − n Δ x )
The Fourier transform (using the definition) of the above function is:
f ^ S ( k ) = ∫ − ∞ ∞ f S ( x ) e − i 2 π k x d x = ∫ − ∞ ∞ ( ∑ n = − ∞ ∞ f ( x ) δ ( x − n Δ x ) ) e − i 2 π k x d x = ∑ n = − ∞ ∞ ( ∫ − ∞ ∞ f ( x ) e − i 2 π k x δ ( x − n Δ x ) d x ) = ∑ n = − ∞ ∞ f ( n Δ x ) e − i 2 π k n Δ x , f [ n ] = f ( n Δ x ) = ∑ n = − ∞ ∞ f [ n ] e − i 2 π n k Δ x = f ^ d t f t ( k ) \begin{equation} \begin{split} \hat{f}_S(k) &= \int_{-\infty}^{\infty} f_S(x) e^{-i 2\pi k x} dx\\ &= \int_{-\infty}^{\infty} \left( \sum_{n=-\infty}^{\infty} f(x)\delta(x-n\Delta{x}) \right) e^{-i 2\pi k x} dx\\ &= \sum_{n=-\infty}^{\infty} \left( \int_{-\infty}^{\infty} f(x) e^{-i 2\pi k x} \delta(x-n\Delta{x}) dx\right)\\ &= \sum_{n=-\infty}^{\infty} f(n\Delta{x})e^{-i 2\pi k n\Delta{x}},\ f[n]=f(n\Delta{x})\\ &=\sum_{n=-\infty}^{\infty} f[n] e^{-i 2\pi n k \Delta{x}}\\ &= \hat{f}_{dtft}(k) \end{split} \end{equation} f ^ S ( k ) = ∫ − ∞ ∞ f S ( x ) e − i 2 πk x d x = ∫ − ∞ ∞ ( n = − ∞ ∑ ∞ f ( x ) δ ( x − n Δ x ) ) e − i 2 πk x d x = n = − ∞ ∑ ∞ ( ∫ − ∞ ∞ f ( x ) e − i 2 πk x δ ( x − n Δ x ) d x ) = n = − ∞ ∑ ∞ f ( n Δ x ) e − i 2 πkn Δ x , f [ n ] = f ( n Δ x ) = n = − ∞ ∑ ∞ f [ n ] e − i 2 πnk Δ x = f ^ d t f t ( k )
which is the definition of discrete-time Fourier transform. The next step is to prove the correctness of the inverse discrete-time Fourier transform:
Δ x ∫ 1 / Δ x f ^ d t f t ( k ) e i 2 π n k Δ x d k = Δ x ∫ − 1 2 Δ x 1 2 Δ x f ^ d t f t ( k ) e i 2 π n k Δ x d k = Δ x ∫ − 1 2 Δ x 1 2 Δ x f ^ S ( k ) e i 2 π n k Δ x d k = Δ x ∫ − 1 2 Δ x 1 2 Δ x [ ∑ m = − ∞ ∞ f [ m ] e − i 2 π m k Δ x ] e i 2 π n k Δ x d k = Δ x ∑ m = − ∞ ∞ f [ m ] [ ∫ − 1 2 Δ x 1 2 Δ x e i 2 π ( n − m ) k Δ x d k ] = Δ x ∑ m = − ∞ ∞ f [ m ] [ 1 i 2 π ( n − m ) Δ x e i 2 π ( n − m ) k Δ x ∣ − 1 2 Δ x 1 2 Δ x ] = Δ x ∑ m = − ∞ ∞ f [ m ] [ 1 Δ x sin ( π ( n − m ) ) π ( n − m ) ] = f [ n ] \begin{equation} \begin{split} \Delta{x} \int_{1/\Delta{x}} \hat{f}_{dtft}(k) e^{i 2\pi n k \Delta{x}} dk &= \Delta{x} \int_{-\frac{1}{2\Delta{x}}}^{\frac{1}{2\Delta{x}}} \hat{f}_{dtft}(k) e^{i 2\pi n k \Delta{x}} dk\\ &= \Delta{x} \int_{-\frac{1}{2\Delta{x}}}^{\frac{1}{2\Delta{x}}} \hat{f}_{S}(k) e^{i 2\pi n k \Delta{x}} dk\\ &=\Delta{x} \int_{-\frac{1}{2\Delta{x}}}^{\frac{1}{2\Delta{x}}} \left[\sum_{m=-\infty}^{\infty} f[m] e^{-i 2\pi m k \Delta{x}}\right] e^{i 2\pi n k \Delta{x}} dk\\ &=\Delta{x} \sum_{m=-\infty}^{\infty} f[m] \left[ \int_{-\frac{1}{2\Delta{x}}}^{\frac{1}{2\Delta{x}}} e^{i 2\pi (n-m) k \Delta{x}} dk \right]\\ &= \Delta{x} \sum_{m=-\infty}^{\infty} f[m] \left[ \left. \frac{1}{i 2\pi (n-m) \Delta{x}} e^{i 2\pi (n-m) k \Delta{x}} \right|_{-\frac{1}{2\Delta{x}}}^{\frac{1}{2\Delta{x}}} \right]\\ &= \Delta{x} \sum_{m=-\infty}^{\infty} f[m] \left[\frac{1}{\Delta{x}} \frac{\sin(\pi(n-m))}{\pi (n-m)}\right]\\ &= f[n] \end{split} \end{equation} Δ x ∫ 1/Δ x f ^ d t f t ( k ) e i 2 πnk Δ x d k = Δ x ∫ − 2Δ x 1 2Δ x 1 f ^ d t f t ( k ) e i 2 πnk Δ x d k = Δ x ∫ − 2Δ x 1 2Δ x 1 f ^ S ( k ) e i 2 πnk Δ x d k = Δ x ∫ − 2Δ x 1 2Δ x 1 [ m = − ∞ ∑ ∞ f [ m ] e − i 2 πmk Δ x ] e i 2 πnk Δ x d k = Δ x m = − ∞ ∑ ∞ f [ m ] [ ∫ − 2Δ x 1 2Δ x 1 e i 2 π ( n − m ) k Δ x d k ] = Δ x m = − ∞ ∑ ∞ f [ m ] [ i 2 π ( n − m ) Δ x 1 e i 2 π ( n − m ) k Δ x − 2Δ x 1 2Δ x 1 ] = Δ x m = − ∞ ∑ ∞ f [ m ] [ Δ x 1 π ( n − m ) sin ( π ( n − m )) ] = f [ n ]
note that s i n c ( x ) = sin ( π x ) π x \mathrm{sinc}(x)=\frac{\sin(\pi x)}{\pi x} sinc ( x ) = π x s i n ( π x ) only has a nonzero value 1 at x = 0 x=0 x = 0 and 0 for other integers.
It is clear that f ^ S ( k ) \hat{f}_S(k) f ^ S ( k ) is a periodic function with period 1 / Δ x 1/\Delta{x} 1/Δ x , we can see that from the convolution theorem of the Fourier transform:
f ^ S ( k ) = F [ f ( x ) S Δ x ( x ) ] = F [ f ( x ) ] ∗ F [ S Δ x ( x ) ] = f ^ ( k ) ∗ S ^ Δ x ( k ) = f ^ ( k ) ∗ 1 Δ x ∑ n = − ∞ ∞ δ ( k − n / Δ x ) = 1 Δ x ∑ n = − ∞ ∞ f ^ ( k ) ∗ δ ( k − n / Δ x ) = 1 Δ x ∑ n = − ∞ ∞ ∫ − ∞ ∞ f ^ ( τ ) δ ( k − τ − n / Δ x ) d τ = 1 Δ x ∑ n = − ∞ ∞ ∫ − ∞ ∞ f ^ ( τ ) δ ( − ( τ − k + n / Δ x ) ) d τ = 1 Δ x ∑ n = − ∞ ∞ ∫ − ∞ ∞ f ^ ( τ ) δ ( τ − ( k − n / Δ x ) ) d τ = 1 Δ x ∑ n = − ∞ ∞ f ^ ( k − n / Δ x ) \begin{equation} \begin{split} \hat{f}_S(k) &= \mathcal{F}\left[f(x)S_{\Delta{x}}(x)\right]\\ &= \mathcal{F}\left[f(x)\right] \ast \mathcal{F}\left[S_{\Delta{x}}(x)\right]\\ &= \hat{f}(k) \ast \hat{S}_{\Delta{x}}(k)\\ &= \hat{f}(k) \ast \frac{1}{\Delta{x}} \sum_{n=-\infty}^{\infty} \delta(k - n/\Delta{x})\\ &= \frac{1}{\Delta{x}} \sum_{n=-\infty}^{\infty} \hat{f}(k) \ast \delta(k - n/\Delta{x})\\ &= \frac{1}{\Delta{x}} \sum_{n=-\infty}^{\infty} \int_{-\infty}^{\infty} \hat{f}(\tau) \delta(k - \tau - n/\Delta{x}) d\tau\\ &= \frac{1}{\Delta{x}} \sum_{n=-\infty}^{\infty} \int_{-\infty}^{\infty} \hat{f}(\tau) \delta(-(\tau - k + n/\Delta{x})) d\tau\\ &= \frac{1}{\Delta{x}} \sum_{n=-\infty}^{\infty} \int_{-\infty}^{\infty} \hat{f}(\tau) \delta(\tau - (k - n/\Delta{x})) d\tau\\ &= \frac{1}{\Delta{x}} \sum_{n=-\infty}^{\infty} \hat{f}(k-n/\Delta{x})\\ \end{split} \end{equation} f ^ S ( k ) = F [ f ( x ) S Δ x ( x ) ] = F [ f ( x ) ] ∗ F [ S Δ x ( x ) ] = f ^ ( k ) ∗ S ^ Δ x ( k ) = f ^ ( k ) ∗ Δ x 1 n = − ∞ ∑ ∞ δ ( k − n /Δ x ) = Δ x 1 n = − ∞ ∑ ∞ f ^ ( k ) ∗ δ ( k − n /Δ x ) = Δ x 1 n = − ∞ ∑ ∞ ∫ − ∞ ∞ f ^ ( τ ) δ ( k − τ − n /Δ x ) d τ = Δ x 1 n = − ∞ ∑ ∞ ∫ − ∞ ∞ f ^ ( τ ) δ ( − ( τ − k + n /Δ x )) d τ = Δ x 1 n = − ∞ ∑ ∞ ∫ − ∞ ∞ f ^ ( τ ) δ ( τ − ( k − n /Δ x )) d τ = Δ x 1 n = − ∞ ∑ ∞ f ^ ( k − n /Δ x )
so the discrete-time Fourier transform of f [ n ] f[n] f [ n ] is a summation of shifted replicates of f ^ ( k ) \hat{f}(k) f ^ ( k ) in terms of a frequency period 1 / Δ x 1/\Delta{x} 1/Δ x .
Properties Common DTFT Pairs DTFT of Periodic Sequences Considering f [ n ] f[n] f [ n ] is an N N N -periodic sequence, we can write f [ n ] f[n] f [ n ] as f S ( x ) = f T ( x ) S Δ x ( x ) f_S(x) = f_T(x) S_{\Delta{x}}(x) f S ( x ) = f T ( x ) S Δ x ( x ) , where N Δ x = T N\Delta{x}=T N Δ x = T . f S ( x ) f_S(x) f S ( x ) is also a periodic function with a period T T T :
f S ( x + T ) = f T ( x + T ) S Δ x ( x + T ) = f T ( x ) S Δ x ( x + N Δ x ) = f T ( x ) S Δ x ( x ) = f S ( x ) f [ n + N ] = f S ( ( n + N ) Δ x ) = f S ( n Δ x + T ) = f S ( n Δ x ) = f [ n ] \begin{equation} \begin{split} f_{S}(x+T) &= f_{T}(x+T) S_{\Delta{x}}(x+T)\\ &= f_T(x) S_{\Delta{x}}(x+N\Delta{x})\\ &= f_T(x) S_{\Delta{x}}(x)\\ &= f_S(x)\\ f[n+N] &= f_S((n+N)\Delta{x})\\ &= f_S(n\Delta{x}+T)\\ &= f_S(n\Delta{x})\\ &= f[n] \end{split} \end{equation} f S ( x + T ) f [ n + N ] = f T ( x + T ) S Δ x ( x + T ) = f T ( x ) S Δ x ( x + N Δ x ) = f T ( x ) S Δ x ( x ) = f S ( x ) = f S (( n + N ) Δ x ) = f S ( n Δ x + T ) = f S ( n Δ x ) = f [ n ]
For delta function, we also know that:
∫ a b f ( x ) δ ( x − x 0 ) d x = = ∫ − ∞ ∞ f ( x ) ( u ( x − a ) − u ( x − b ) ) δ ( x − x 0 ) d x = f ( x 0 ) ( u ( x 0 − a ) − u ( x 0 − b ) ) = { f ( x 0 ) x 0 ∈ ( a , b ) f ( x 0 ) / 2 x 0 = a , b 0 else \begin{equation} \begin{split} \int_{a}^{b} f(x) \delta(x-x_0) dx &=\\ &= \int_{-\infty}^{\infty} f(x) \left(u(x-a) - u(x-b)\right) \delta(x-x_0) dx\\ &= f(x_0)\left(u(x_0-a) - u(x_0-b)\right)\\ &= \begin{cases} f(x_0) & x_0 \in (a, b)\\ f(x_0)/2 & x_0=a,b\\ 0 & \text{else} \end{cases} \end{split} \end{equation} ∫ a b f ( x ) δ ( x − x 0 ) d x = = ∫ − ∞ ∞ f ( x ) ( u ( x − a ) − u ( x − b ) ) δ ( x − x 0 ) d x = f ( x 0 ) ( u ( x 0 − a ) − u ( x 0 − b ) ) = ⎩ ⎨ ⎧ f ( x 0 ) f ( x 0 ) /2 0 x 0 ∈ ( a , b ) x 0 = a , b else
where u ( x ) u(x) u ( x ) is the unit step function.
Remember that Fourier transform of a periodic function is a summation of delta functions weighted by the Fourier coefficients:
c m = 1 T ∫ T f S ( x ) e − i 2 π m x / T d x = 1 T ∫ − − Δ x 2 T − − Δ x 2 f T ( x ) S Δ x ( x ) e − i 2 π m x / T d x = 1 T ∫ − − Δ x 2 T − − Δ x 2 f T ( x ) ∑ n = − ∞ ∞ δ ( x − n Δ x ) e − i 2 π m x / T d x = 1 T ∫ − − Δ x 2 T − − Δ x 2 f T ( x ) ∑ n = 0 N − 1 δ ( x − n Δ x ) e − i 2 π m x / T d x = 1 T ∑ n = 0 N − 1 ∫ − − Δ x 2 T − − Δ x 2 f T ( x ) e − i 2 π m x / T δ ( x − n Δ x ) d x = 1 T ∑ n = 0 N − 1 f T ( n Δ x ) e − i 2 π n m Δ x / T = 1 T ∑ n = 0 N − 1 f T ( n Δ x ) e − i 2 π n m Δ x / ( N Δ x ) ) = 1 T ∑ n = 0 N − 1 f T ( n Δ x ) e − i 2 π n m / N ) = 1 T ∑ n = 0 N − 1 f [ n ] e − i 2 π n m / N f ^ d t f t ( k ) = F ( f S ( x ) ) = ∑ m = − ∞ ∞ c m δ ( k − m / T ) = 1 T ∑ m = − ∞ ∞ ( ∑ n = 0 N − 1 f [ n ] e − i 2 π n m / N ) δ ( k − m / T ) = 1 T ∑ m = − ∞ ∞ f ^ [ m ] δ ( k − m / T ) = 1 N Δ x ∑ m = − ∞ ∞ f ^ [ m ] δ ( k − m N Δ x ) \begin{equation} \begin{split} c_m &= \frac{1}{T} \int_{T} f_{S}(x) e^{-i 2\pi m x / T} dx\\ &= \frac{1}{T} \int_{-\frac{-\Delta{x}}{2}}^{T-\frac{-\Delta{x}}{2}} f_T(x) S_{\Delta{x}}(x) e^{-i 2\pi m x / T} dx\\ &= \frac{1}{T} \int_{-\frac{-\Delta{x}}{2}}^{T-\frac{-\Delta{x}}{2}} f_T(x) \sum_{n=-\infty}^{\infty} \delta(x-n\Delta{x}) e^{-i 2\pi m x / T} dx\\ &= \frac{1}{T} \int_{-\frac{-\Delta{x}}{2}}^{T-\frac{-\Delta{x}}{2}} f_T(x) \sum_{n=0}^{N-1} \delta(x-n\Delta{x}) e^{-i 2\pi m x / T} dx\\ &= \frac{1}{T} \sum_{n=0}^{N-1} \int_{-\frac{-\Delta{x}}{2}}^{T-\frac{-\Delta{x}}{2}} f_T(x) e^{-i 2\pi m x / T} \delta(x-n\Delta{x}) dx\\ &= \frac{1}{T} \sum_{n=0}^{N-1} f_T(n\Delta{x}) e^{-i 2\pi n m \Delta{x} / T}\\ &= \frac{1}{T} \sum_{n=0}^{N-1} f_T(n\Delta{x}) e^{-i 2\pi n m \Delta{x} / (N\Delta{x}))}\\ &= \frac{1}{T} \sum_{n=0}^{N-1} f_T(n\Delta{x}) e^{-i 2\pi n m / N)}\\ &= \frac{1}{T} \sum_{n=0}^{N-1} f[n] e^{-i 2\pi n m / N}\\ \hat{f}_{dtft}(k) &= \mathcal{F}(f_S(x))\\ &= \sum_{m=-\infty}^{\infty} c_m \delta(k - m/T)\\ &= \frac{1}{T} \sum_{m=-\infty}^{\infty} \left(\sum_{n=0}^{N-1} f[n] e^{-i 2\pi n m / N}\right) \delta(k - m/T)\\ &= \frac{1}{T} \sum_{m=-\infty}^{\infty} \hat{f}[m] \delta(k - m/T)\\ &= \frac{1}{N\Delta{x}} \sum_{m=-\infty}^{\infty} \hat{f}[m] \delta(k - \frac{m}{N\Delta{x}}) \end{split} \end{equation} c m f ^ d t f t ( k ) = T 1 ∫ T f S ( x ) e − i 2 πm x / T d x = T 1 ∫ − 2 − Δ x T − 2 − Δ x f T ( x ) S Δ x ( x ) e − i 2 πm x / T d x = T 1 ∫ − 2 − Δ x T − 2 − Δ x f T ( x ) n = − ∞ ∑ ∞ δ ( x − n Δ x ) e − i 2 πm x / T d x = T 1 ∫ − 2 − Δ x T − 2 − Δ x f T ( x ) n = 0 ∑ N − 1 δ ( x − n Δ x ) e − i 2 πm x / T d x = T 1 n = 0 ∑ N − 1 ∫ − 2 − Δ x T − 2 − Δ x f T ( x ) e − i 2 πm x / T δ ( x − n Δ x ) d x = T 1 n = 0 ∑ N − 1 f T ( n Δ x ) e − i 2 πnm Δ x / T = T 1 n = 0 ∑ N − 1 f T ( n Δ x ) e − i 2 πnm Δ x / ( N Δ x )) = T 1 n = 0 ∑ N − 1 f T ( n Δ x ) e − i 2 πnm / N ) = T 1 n = 0 ∑ N − 1 f [ n ] e − i 2 πnm / N = F ( f S ( x )) = m = − ∞ ∑ ∞ c m δ ( k − m / T ) = T 1 m = − ∞ ∑ ∞ ( n = 0 ∑ N − 1 f [ n ] e − i 2 πnm / N ) δ ( k − m / T ) = T 1 m = − ∞ ∑ ∞ f ^ [ m ] δ ( k − m / T ) = N Δ x 1 m = − ∞ ∑ ∞ f ^ [ m ] δ ( k − N Δ x m )
Note we use a trick with a range between − − Δ x 2 -\frac{-\Delta{x}}{2} − 2 − Δ x and T − − Δ x 2 T-\frac{-\Delta{x}}{2} T − 2 − Δ x to make sure only N points are available for δ ( x − m Δ x ) \delta(x-m\Delta{x}) δ ( x − m Δ x ) in the integral equation, and introduce a new symbol f ^ [ m ] = ∑ n = 0 N − 1 f [ n ] e − i 2 π n m / N \hat{f}[m] = \sum_{n=0}^{N-1} f[n] e^{-i 2\pi n m / N} f ^ [ m ] = ∑ n = 0 N − 1 f [ n ] e − i 2 πnm / N , which is referred to as the discrete Fourier transform (explained latter). So the discrete-time Fourier transform of a periodic sequence can be seen as the Fourier transform of a periodic function with exact sampling interval (Δ x = T N \Delta x=\frac{T}{N} Δ x = N T ) . The result is a summation of delta functions, where the weights are the discrete Fourier transform values. f ^ d t f t ( k ) \hat{f}_{dtft}(k) f ^ d t f t ( k ) converges to zero everywhere except at integer multiples of 1 T \frac{1}{T} T 1 , known as harmonic frequencies. And the period 1 / Δ x 1/\Delta{x} 1/Δ x still holds for f ^ d t f t ( k ) \hat{f}_{dtft}(k) f ^ d t f t ( k ) :
f ^ d t f t ( k + 1 / Δ x ) = 1 N Δ x ∑ m = − ∞ ∞ f ^ [ m ] δ ( k + 1 / Δ x − m / ( N Δ x ) ) = 1 N Δ x ∑ m = − ∞ ∞ f ^ [ m ] δ ( k − ( m − N ) / ( N Δ x ) ) , n = m − N = 1 N Δ x ∑ n = − ∞ ∞ f ^ [ n + N ] δ ( k − n / ( N Δ x ) ) = 1 N Δ x ∑ n = − ∞ ∞ f ^ [ n ] δ ( k − n / ( N Δ x ) ) = f ^ d t f t ( k ) \begin{equation} \begin{split} \hat{f}_{dtft}(k + 1/\Delta{x}) &= \frac{1}{N\Delta{x}} \sum_{m=-\infty}^{\infty} \hat{f}[m] \delta(k + 1/\Delta{x} - m/(N\Delta{x}))\\ &= \frac{1}{N\Delta{x}} \sum_{m=-\infty}^{\infty} \hat{f}[m] \delta(k - (m-N)/(N\Delta{x})),\ n=m-N\\ &= \frac{1}{N\Delta{x}} \sum_{n=-\infty}^{\infty} \hat{f}[n+N] \delta(k - n/(N\Delta{x}))\\ &= \frac{1}{N\Delta{x}} \sum_{n=-\infty}^{\infty} \hat{f}[n] \delta(k - n/(N\Delta{x}))\\ &= \hat{f}_{dtft}(k) \end{split} \end{equation} f ^ d t f t ( k + 1/Δ x ) = N Δ x 1 m = − ∞ ∑ ∞ f ^ [ m ] δ ( k + 1/Δ x − m / ( N Δ x )) = N Δ x 1 m = − ∞ ∑ ∞ f ^ [ m ] δ ( k − ( m − N ) / ( N Δ x )) , n = m − N = N Δ x 1 n = − ∞ ∑ ∞ f ^ [ n + N ] δ ( k − n / ( N Δ x )) = N Δ x 1 n = − ∞ ∑ ∞ f ^ [ n ] δ ( k − n / ( N Δ x )) = f ^ d t f t ( k )
Substituting f ^ d t f t ( k ) \hat{f}_{dtft}(k) f ^ d t f t ( k ) into the inverse discrete-time Fourier transform formula (note that k s = 1 Δ x k_s=\frac{1}{\Delta{x}} k s = Δ x 1 is the sampling frequency), we can verify that:
1 k s ∫ k s f ^ d t f t ( k ) e i 2 π n k k s d k = 1 k s ∫ − k s 2 N k s − k s 2 N k s N ∑ m = − ∞ ∞ f ^ d f t [ m ] δ ( k − m k s / N ) e i 2 π n k k s d k = 1 N ∫ − k s 2 N k s − k s 2 N ∑ m = 0 N − 1 f ^ d f t [ m ] δ ( k − m k s / N ) e i 2 π n k k s d k = 1 N ∑ m = 0 N − 1 ∫ − k s 2 N k s − k s 2 N f ^ d f t [ m ] e i 2 π n k k s δ ( k − m k s / N ) d k = 1 N ∑ m = 0 N − 1 f ^ d f t [ m ] e i 2 π n m N = 1 N ∑ m = 0 N − 1 ∑ l = 0 N − 1 f [ l ] e − i 2 π m l N e i 2 π n m N = 1 N ∑ l = 0 N − 1 f [ l ] ∑ m = 0 N − 1 e i 2 π ( n − l ) m N = 1 N ∑ l = 0 N − 1 f [ l ] [ e i π N − 1 N ( n − l ) sin ( π ( n − l ) ) sin ( π n − l N ) ] = 1 N ∑ l = 0 N − 1 f [ l ] g [ l ] = f [ n ] \begin{equation} \begin{split} \frac{1}{k_s} \int_{k_s} \hat{f}_{dtft}(k) e^{i 2\pi n \frac{k}{k_s}} dk &= \frac{1}{k_s} \int_{-\frac{k_s}{2N}}^{k_s - \frac{k_s}{2N}} \frac{k_s}{N} \sum_{m=-\infty}^{\infty} \hat{f}_{dft}[m] \delta(k - m k_s / N) e^{i 2\pi n \frac{k}{k_s}} dk\\ &= \frac{1}{N} \int_{-\frac{k_s}{2N}}^{k_s - \frac{k_s}{2N}} \sum_{m=0}^{N-1} \hat{f}_{dft}[m] \delta(k - m k_s / N) e^{i 2\pi n \frac{k}{k_s}} dk\\ &= \frac{1}{N} \sum_{m=0}^{N-1} \int_{-\frac{k_s}{2N}}^{k_s - \frac{k_s}{2N}} \hat{f}_{dft}[m] e^{i 2\pi n \frac{k}{k_s}} \delta(k - m k_s / N) dk\\ &= \frac{1}{N} \sum_{m=0}^{N-1} \hat{f}_{dft}[m] e^{i 2\pi n \frac{m}{N}} \\ &= \frac{1}{N} \sum_{m=0}^{N-1} \sum_{l=0}^{N-1} f[l] e^{-i 2\pi m \frac{l}{N}} e^{i 2\pi n \frac{m}{N}}\\ &= \frac{1}{N} \sum_{l=0}^{N-1} f[l] \sum_{m=0}^{N-1} e^{i 2\pi (n-l) \frac{m}{N}}\\ &= \frac{1}{N} \sum_{l=0}^{N-1} f[l] \left[e^{i \pi \frac{N-1}{N} (n-l)} \frac{\sin(\pi (n-l))}{\sin(\pi \frac{n-l}{N})}\right]\\ &= \frac{1}{N} \sum_{l=0}^{N-1} f[l] g[l]\\ &= f[n] \end{split} \end{equation} k s 1 ∫ k s f ^ d t f t ( k ) e i 2 πn k s k d k = k s 1 ∫ − 2 N k s k s − 2 N k s N k s m = − ∞ ∑ ∞ f ^ df t [ m ] δ ( k − m k s / N ) e i 2 πn k s k d k = N 1 ∫ − 2 N k s k s − 2 N k s m = 0 ∑ N − 1 f ^ df t [ m ] δ ( k − m k s / N ) e i 2 πn k s k d k = N 1 m = 0 ∑ N − 1 ∫ − 2 N k s k s − 2 N k s f ^ df t [ m ] e i 2 πn k s k δ ( k − m k s / N ) d k = N 1 m = 0 ∑ N − 1 f ^ df t [ m ] e i 2 πn N m = N 1 m = 0 ∑ N − 1 l = 0 ∑ N − 1 f [ l ] e − i 2 πm N l e i 2 πn N m = N 1 l = 0 ∑ N − 1 f [ l ] m = 0 ∑ N − 1 e i 2 π ( n − l ) N m = N 1 l = 0 ∑ N − 1 f [ l ] [ e iπ N N − 1 ( n − l ) sin ( π N n − l ) sin ( π ( n − l )) ] = N 1 l = 0 ∑ N − 1 f [ l ] g [ l ] = f [ n ]
where g [ l ] = e i π N − 1 N ( n − l ) sin ( π ( n − l ) ) sin ( π n − l N ) g[l]=e^{i \pi \frac{N-1}{N} (n-l)} \frac{\sin(\pi (n-l))}{\sin(\pi \frac{n-l}{N})} g [ l ] = e iπ N N − 1 ( n − l ) s i n ( π N n − l ) s i n ( π ( n − l )) only has a value N N N when l = n l=n l = n otherwise 0.
Discrete-Time Fourier Series Definition For a N-periodic sequence f [ n ] f[n] f [ n ] , it has the following series representation:
c m = ∑ n = 0 N − 1 f [ n ] e − i 2 π m n N f [ n ] = 1 N ∑ m = 0 N − 1 c m e i 2 π n m N \begin{equation} \begin{split} c_m &= \sum_{n=0}^{N-1} f[n] e^{-i2\pi\frac{mn}{N}}\\ f[n] &= \frac{1}{N} \sum_{m=0}^{N-1} c_m e^{i2\pi \frac{nm}{N}} \end{split} \end{equation} c m f [ n ] = n = 0 ∑ N − 1 f [ n ] e − i 2 π N mn = N 1 m = 0 ∑ N − 1 c m e i 2 π N nm
Here c m c_m c m ’s are the DTFS coefficients and they are periodic with period N N N . The series representation of f [ n ] f[n] f [ n ] is called the inverse DTFS.
Connection to the DTFT As we proved in DTFT of Periodic Sequences, DTFS is actually a discretized version of DTFT of periodic sequences. Given a signal f ( x ) f(x) f ( x ) with period T T T and its N-periodic sequence f [ n ] f[n] f [ n ] , we first compute its DTFS coefficients c m c_m c m , then the DTFT f ^ d t f t ( k ) \hat{f}_{dtft}(k) f ^ d t f t ( k ) of f [ n ] f[n] f [ n ] is represented by:
f ^ d t f t ( k ) = 1 T ∑ m = − ∞ ∞ c m δ ( k − m / T ) \begin{equation} \begin{split} \hat{f}_{dtft}(k) &= \frac{1}{T} \sum_{m=-\infty}^{\infty} c_m \delta(k - m/T)\\ \end{split} \end{equation} f ^ d t f t ( k ) = T 1 m = − ∞ ∑ ∞ c m δ ( k − m / T )
The original sequence f [ n ] f[n] f [ n ] can be recovered from the inverse DTFT, which is also the inverse DTFS.
TL;DR I found that Professor Jeffery Fessler’s note gives a clear picture of relations of different transforms. In general, the DFT is a simpified way to transform sampled time-domain sequences to sampled frequency-domain sequences.
Definition For a sequence of N N N complex numbers { f [ n ] } n = 0 N − 1 {\{f[n]\}}_{n=0}^{N-1} { f [ n ]} n = 0 N − 1 , the discrete Fourier Transform transforms the sequence into another sequence of complex numbers { f ^ [ m ] } m = 0 N − 1 {\{\hat{f}[m]\}}_{m=0}^{N-1} { f ^ [ m ]} m = 0 N − 1 :
f ^ [ m ] = ∑ n = 0 N − 1 f [ n ] e − i 2 π k n N \begin{equation} \hat{f}[m] = \sum_{n=0}^{N-1} f[n] e^{-i 2\pi k \frac{n}{N}} \end{equation} f ^ [ m ] = n = 0 ∑ N − 1 f [ n ] e − i 2 πk N n
The inverse discrete Fourier transform is given by:
f [ n ] = 1 N ∑ m = 0 N − 1 f ^ [ m ] e i 2 π n m N \begin{equation} f[n] = \frac{1}{N} \sum_{m=0}^{N-1} \hat{f}[m] e^{i 2\pi n \frac{m}{N}} \end{equation} f [ n ] = N 1 m = 0 ∑ N − 1 f ^ [ m ] e i 2 πn N m
Connection to the DTFT and DTFS The DFT can be motivated by the sampling of the DTFT. Consider sampling the DTFT with Δ k \Delta{k} Δ k sampling interval such that one period was sampled with exactly N N N points (N Δ k = 1 / Δ x N \Delta{k} = 1/\Delta{x} N Δ k = 1/Δ x ):
f ^ d t f t [ m ] = f ^ d t f t ( m Δ k ) = ∑ n = − ∞ ∞ f [ n ] e − i 2 π n Δ x m Δ k = ∑ n = − ∞ ∞ f [ n ] e − i 2 π n m N \begin{equation} \begin{split} \hat{f}_{dtft}[m] &= \hat{f}_{dtft}(m\Delta{k})\\ &= \sum_{n=-\infty}^{\infty} f[n] e^{-i2\pi n\Delta{x} m\Delta{k}}\\ &= \sum_{n=-\infty}^{\infty} f[n] e^{-i2\pi \frac{nm}{N}} \end{split} \end{equation} f ^ d t f t [ m ] = f ^ d t f t ( m Δ k ) = n = − ∞ ∑ ∞ f [ n ] e − i 2 πn Δ x m Δ k = n = − ∞ ∑ ∞ f [ n ] e − i 2 π N nm
Let’s break f [ n ] f[n] f [ n ] into N N N -length segments such as f [ 0 ] . . . f [ N − 1 ] f[0] ... f[N-1] f [ 0 ] ... f [ N − 1 ] , f [ N ] . . . f [ 2 N − 1 ] f[N] ... f[2N-1] f [ N ] ... f [ 2 N − 1 ] , let n = l − j N n=l-jN n = l − j N where l ∈ [ 0 , N − 1 ] l \in [0, N-1] l ∈ [ 0 , N − 1 ] and j ∈ [ − ∞ , ∞ ] j \in [-\infty, \infty] j ∈ [ − ∞ , ∞ ] , then f ^ d t f t [ m ] \hat{f}_{dtft}[m] f ^ d t f t [ m ] can be redefined with N N N -point periodic superposition f p s [ l ] = ∑ j = − ∞ ∞ f [ l − j N ] f_{ps}[l] = \sum_{j=-\infty}^{\infty} f[l-jN] f p s [ l ] = ∑ j = − ∞ ∞ f [ l − j N ] :
f ^ d t f t [ m ] = ∑ n = − ∞ ∞ f [ n ] e − i 2 π n m N = ∑ j = − ∞ ∞ ∑ l = 0 N − 1 f [ l − j N ] e − i 2 π ( l − j N ) m N = ∑ j = − ∞ ∞ ∑ l = 0 N − 1 f [ l − j N ] e − i 2 π l m N = ∑ l = 0 N − 1 ( ∑ j = − ∞ ∞ f [ l − j N ] ) e − i 2 π l m N = ∑ l = 0 N − 1 f p s [ l ] e − i 2 π l m N \begin{equation} \begin{split} \hat{f}_{dtft}[m] &= \sum_{n=-\infty}^{\infty} f[n] e^{-i2\pi \frac{nm}{N}}\\ &= \sum_{j=-\infty}^{\infty} \sum_{l=0}^{N-1} f[l-jN] e^{-i2\pi (l-jN) \frac{m}{N}}\\ &= \sum_{j=-\infty}^{\infty} \sum_{l=0}^{N-1} f[l-jN] e^{-i2\pi l \frac{m}{N}}\\ &= \sum_{l=0}^{N-1} \left(\sum_{j=-\infty}^{\infty} f[l-jN]\right) e^{-i2\pi l \frac{m}{N}}\\ &= \sum_{l=0}^{N-1} f_{ps}[l] e^{-i2\pi l \frac{m}{N}} \end{split} \end{equation} f ^ d t f t [ m ] = n = − ∞ ∑ ∞ f [ n ] e − i 2 π N nm = j = − ∞ ∑ ∞ l = 0 ∑ N − 1 f [ l − j N ] e − i 2 π ( l − j N ) N m = j = − ∞ ∑ ∞ l = 0 ∑ N − 1 f [ l − j N ] e − i 2 π l N m = l = 0 ∑ N − 1 ( j = − ∞ ∑ ∞ f [ l − j N ] ) e − i 2 π l N m = l = 0 ∑ N − 1 f p s [ l ] e − i 2 π l N m
Obviously, f p s [ l ] f_{ps}[l] f p s [ l ] is a N N N -periodic sequence. Since f p s [ l ] f_{ps}[l] f p s [ l ] is N N N -periodic, it can be represented with the DTFS:
c m = ∑ l = 0 N − 1 f p s [ l ] e − i 2 π l m N f p s [ l ] = 1 N ∑ m = 0 N − 1 c m e i 2 π m l N \begin{equation} \begin{split} c_m &= \sum_{l=0}^{N-1} f_{ps}[l] e^{-i 2\pi \frac{lm}{N}}\\ f_{ps}[l] &= \frac{1}{N} \sum_{m=0}^{N-1} c_m e^{i 2\pi \frac{ml}{N}} \end{split} \end{equation} c m f p s [ l ] = l = 0 ∑ N − 1 f p s [ l ] e − i 2 π N l m = N 1 m = 0 ∑ N − 1 c m e i 2 π N m l
Comparing the DTFS coefficients and the above DTFT samples, we see that:
c m = f ^ d t f t [ m ] \begin{equation} \begin{split} c_m &= \hat{f}_{dtft}[m] \end{split} \end{equation} c m = f ^ d t f t [ m ]
Thus, we can recover the periodic sequence f p s [ l ] f_{ps}[l] f p s [ l ] from those DTFT samples with the inverse DTFS:
f p s [ l ] = 1 N ∑ m = 0 N − 1 f ^ d t f t [ m ] e i 2 π m l N \begin{equation} \begin{split} f_{ps}[l] &= \frac{1}{N} \sum_{m=0}^{N-1} \hat{f}_{dtft}[m] e^{i 2\pi \frac{ml}{N}} \end{split} \end{equation} f p s [ l ] = N 1 m = 0 ∑ N − 1 f ^ d t f t [ m ] e i 2 π N m l
However, this recovery does not ensure that we can recover the original sequence f [ n ] f[n] f [ n ] with those DTFT samples. f p s [ l ] f_{ps}[l] f p s [ l ] is a sum of shifted replicates of f [ n ] f[n] f [ n ] . Thus there is no perfect reconstruction for non time-limited sequences since time-domain replicates overlap and aliasing occurs.
There is a special case where time-domain replicates do not overlap. Considering a time-limited sequence f [ n ] f[n] f [ n ] with duration L L L which it has nonzero values only in the interval 0 , . . . , L − 1 0,..., L-1 0 , ... , L − 1 . If N ≥ L N \ge L N ≥ L , then there is no overlap in the replicates. The original sequence f [ n ] f[n] f [ n ] can be recovered from f p s [ l ] f_{ps}[l] f p s [ l ] :
f [ n ] = { f p s [ n ] n ∈ [ 0 , L − 1 ) 0 otherwise \begin{equation} f[n] = \begin{cases} f_{ps}[n] & n \in [0, L-1)\\ 0 & \text{otherwise} \end{cases} \end{equation} f [ n ] = { f p s [ n ] 0 n ∈ [ 0 , L − 1 ) otherwise
In fact, if f [ n ] f[n] f [ n ] is time-limited, the DTFT samples simplifies to a limited summation:
f ^ [ m ] = f ^ d t f t [ m ] = ∑ n = 0 L − 1 f [ n ] e − i 2 π n m M = ∑ n = 0 N − 1 f [ n ] e − i 2 π n m M \begin{equation} \begin{split} \hat{f}[m] &= \hat{f}_{dtft}[m]\\ &= \sum_{n=0}^{L-1} f[n] e^{-i2\pi n \frac{m}{M}}\\ &= \sum_{n=0}^{N-1} f[n] e^{-i2\pi n \frac{m}{M}} \end{split} \end{equation} f ^ [ m ] = f ^ d t f t [ m ] = n = 0 ∑ L − 1 f [ n ] e − i 2 πn M m = n = 0 ∑ N − 1 f [ n ] e − i 2 πn M m
where f [ n ] = 0 f[n]=0 f [ n ] = 0 for n ≥ L n \ge L n ≥ L and the above formula is called DFT and f [ n ] f[n] f [ n ] can be recovered from the inverse DFT formula:
f [ n ] = { 1 N ∑ m = 0 N − 1 f ^ [ m ] e i 2 π m n N n = 0 , . . . , N − 1 0 otherwise \begin{equation} \begin{split} f[n] = \begin{cases} \frac{1}{N} \sum_{m=0}^{N-1} \hat{f}[m] e^{i 2\pi \frac{mn}{N}} & n=0, ..., N-1\\ 0 & \text{otherwise} \end{cases} \end{split} \end{equation} f [ n ] = { N 1 ∑ m = 0 N − 1 f ^ [ m ] e i 2 π N mn 0 n = 0 , ... , N − 1 otherwise
Properties TODO
Common DFT Pairs TODO
TODO