The Fourier transform decomposes a function into different frequency components, which can be summed to represent the original function.

Fourier Series

TL;DR

  • Any continuous periodic function can be represented by Fourier series, where Fourier coefficients are the weighted integrals of the periodic function over one period.

Definition

A periodic function fT(x)f_{T}(x) with a period TT can be decomposed into the following exponential form:

fT(x)=n=cnei2πnxT\begin{equation} f_{T}(x) = \sum_{n=-\infty}^{\infty} c_n e^{i 2\pi n \frac{x}{T}} \end{equation}

where cnc_n are Fourier coefficients:

cn=1TTfT(x)ei2πnxTdx\begin{equation} c_n = \frac{1}{T} \int_{T} f_{T}(x) e^{-i 2\pi n \frac{x}{T}} dx \end{equation}

Continuous Fourier Transform

TL;DR

  • The Fourier transform works for both periodic and non-periodic continuous functions.
  • The Fourier transform is a special case of the Fourier series when the period goes to infinity.
  • The Fourier transform of a periodic function is a summation of weighted delta functions at specific frequencies (harmonics of 1/T1/T), where the weights are the Fourier coefficients.

Definition

For any integrable real-valued function f:RCf: \mathbb{R} \rightarrow \mathbb{C}, the Fourier transform is defined as:

f^(k)=f(x)ei2πkxdx\begin{equation} \hat{f}(k) = \int_{-\infty}^{\infty} f(x) e^{-i 2\pi k x} dx \end{equation}

where kRk \in \mathbb{R} represents continuous frequencies. For example, if xx is measured in seconds, then frequency is in hertz. The Fourier transform is able to represent periodic and non-periodic functions, whereas the Fourier series only works for periodic functions.

The inverse Fourier transform is defined as:

f(x)=f^(k)ei2πxkdk\begin{equation} f(x) = \int_{-\infty}^{\infty} \hat{f}(k) e^{i 2\pi x k} dk \end{equation}

f(x)f(x) and f^(k)\hat{f}(k) are often referred to as a Fourier transform pair. Here, we use F\mathcal{F} and F1\mathcal{F}^{-1} to denote the Fourier transform (FT) and inverse Fourier transform (iFT), respectively.

Sign of Fourier transform
Remember the sign used in Fourier transform and inverse Fourier transform is just a convention. Mathematicians usually choose a negative sign for the inverse Fourier transform while engineers stuck to a positive sign for it. It is not that one is better than the other. The consistency is the key, otherwise errors and confusions may arise.

Connection to Fourier Series

Only periodic signals could be decomposed with Fourier series, what about non-periodic signals? We would see that Fourier transform is actually Fourier series when TT goes to the infinity, meaning there is non-periodic signals.

f(x)=limTfT(x)=limTn=cnei2πnxT=limTn=[1TTfT(x)ei2πnxTdx]ei2πnxT=limΔfn0n=[T/2T/2fT(x)ei2πknxdx]ei2πxknΔkn, kn=nT Δkn=1T=[f(x)ei2πkxdx]ei2πxkdk=f^(k)ei2πxkdk\begin{equation} \begin{split} f(x) &= \lim_{T \rightarrow \infty} f_T(x)\\ &= \lim_{T \rightarrow \infty} \sum_{n=-\infty}^{\infty} c_n e^{i 2\pi n \frac{x}{T}}\\ &= \lim_{T \rightarrow \infty} \sum_{n=-\infty}^{\infty} \left[ \frac{1}{T} \int_{T} f_{T}(x) e^{-i 2\pi n \frac{x}{T}} dx \right] e^{i 2\pi n \frac{x}{T}}\\ &= \lim_{\Delta{f_n} \rightarrow 0} \sum_{n=-\infty}^{\infty} \left[ \int_{-T/2}^{T/2} f_{T}(x) e^{-i 2\pi k_n x} dx \right] e^{i 2\pi x k_n} \Delta{k_n},\ k_n = \frac{n}{T}\ \Delta{k_n}=\frac{1}{T}\\ &= \int_{-\infty}^{\infty} \left[ \int_{-\infty}^{\infty} f(x) e^{-i 2\pi k x} dx \right] e^{i 2\pi x k} dk\\ &= \int_{-\infty}^{\infty} \hat{f}(k) e^{i 2\pi x k} dk \end{split} \end{equation}

and that is exactly Fourier transform (note the definition of integral above).

Properties

Linearity

For any complex numbers aa and bb, if h(x)=af(x)+bg(x)h(x)=af(x)+bg(x), then h^(k)=f^(k)+g^(k)\hat{h}(k) = \hat{f}(k) + \hat{g}(k).

Time Shifting

For any real number x0x_0, if h(x)=f(xx0)h(x)=f(x-x_0), then h^(k)=ei2πx0kf^(k)\hat{h}(k)=e^{-i 2\pi x_0 k} \hat{f}(k).

F[h(x)]=f(xx0)ei2πkxdx=f(x^)ei2πk(x^+x0)d(x^+x0)=ei2πx0kf(x^)ei2πkx^dx^=ei2πx0kf^(k)\begin{equation} \begin{split} \mathcal{F}\left[h(x)\right] &= \int_{-\infty}^{\infty} f(x-x_0) e^{-i 2\pi k x} dx\\ &= \int_{-\infty}^{\infty} f(\hat{x}) e^{-i 2\pi k (\hat{x}+x_0)} d(\hat{x}+x_0)\\ &= e^{-i 2\pi x_0 k} \int_{-\infty}^{\infty} f(\hat{x}) e^{-i 2\pi k \hat{x}} d\hat{x}\\ &= e^{-i 2\pi x_0 k} \hat{f}(k) \end{split} \end{equation}

Frequency Shifting

For any real number k0k_0, if h^(k)=f^(kk0)\hat{h}(k) = \hat{f}(k-k_0), then h(x)=ei2πk0xf(x)h(x)=e^{i 2 \pi k_0 x} f(x).

F1[h^(k)]=f^(kk0)ei2πxkdk=f^(k^)ei2πx(k^+k0)d(k^+k0)=ei2πk0xf^(k^)ei2πxk^dk^=ei2πk0xf(x)\begin{equation} \begin{split} \mathcal{F}^{-1}\left[\hat{h}(k)\right] &= \int_{-\infty}^{\infty} \hat{f}(k-k_0) e^{i 2\pi x k} dk\\ &= \int_{-\infty}^{\infty} \hat{f}(\hat{k}) e^{i 2\pi x(\hat{k}+k_0)} d(\hat{k}+k_0)\\ &= e^{i 2\pi k_0 x} \int_{-\infty}^{\infty} \hat{f}(\hat{k}) e^{i 2\pi x\hat{k}} d\hat{k}\\ &= e^{i 2\pi k_0 x} f(x) \end{split} \end{equation}

Scale Property

For any real number aa, if h(x)=f(ax)h(x)=f(ax), then h^(k)=1af^(ka)\hat{h}(k)=\frac{1}{|a|}\hat{f}(\frac{k}{a}). Let’s assuming a>0a \gt 0:

F[h(x)]=f(ax)ei2πkxdx=f(x^)ei2πk(x^/a)d(x^/a)=1af(x^)ei2π(k/a)x^dx^=1af^(ka)\begin{equation} \begin{split} \mathcal{F}\left[h(x)\right] &= \int_{-\infty}^{\infty} f(ax) e^{-i 2\pi k x} dx\\ &= \int_{-\infty}^{\infty} f(\hat{x}) e^{-i 2\pi k (\hat{x}/a)} d(\hat{x}/a)\\ &= \frac{1}{a} \int_{-\infty}^{\infty} f(\hat{x}) e^{-i 2\pi (k / a) \hat{x}} d\hat{x}\\ &= \frac{1}{a} \hat{f}(\frac{k}{a}) \end{split} \end{equation}

and if a<0a \lt 0:

F[h(x)]=f(ax)ei2πkxdx=f(x^)ei2πk(x^/a)d(x^/a)=1af(x^)ei2π(k/a)x^dx^=1aF(ka)\begin{equation} \begin{split} \mathcal{F}\left[h(x)\right] &= \int_{-\infty}^{\infty} f(ax) e^{-i 2\pi k x} dx\\ &= \int_{\infty}^{-\infty} f(\hat{x}) e^{-i 2\pi k (\hat{x}/a)} d(\hat{x}/a)\\ &= \frac{1}{-a} \int_{-\infty}^{\infty} f(\hat{x}) e^{-i 2\pi (k/ a) \hat{x}} d\hat{x}\\ &= \frac{1}{-a} F(\frac{k}{a}) \end{split} \end{equation}

Time Convolution Theorem

For Fourier transform pairs f(x)f^(k)f(x) \leftrightarrow \hat{f}(k) and g(x)g^(k)g(x) \leftrightarrow \hat{g}(k), we have:

F[f(x)g(x)]=f(τ)g(xτ)dτei2πkxdx=g(xτ)ei2πkxdxf(τ)dτ=g(x^)ei2πk(x^+τ)d(x^+τ)f(τ)dτ=(g(x^)ei2πkx^dx^)f(τ)ei2πkτdτ=g^(k)f(τ)ei2πkτdτ=g^(k)f^(k)\begin{equation} \begin{split} \mathcal{F}\left[f(x) \ast g(x)\right] &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\tau)g(x-\tau) d\tau e^{-i 2\pi k x} dx \\ &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x-\tau) e^{-i 2\pi k x} dx f(\tau) d\tau\\ &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(\hat{x}) e^{-i 2\pi k (\hat{x}+\tau)} d(\hat{x}+\tau) f(\tau) d\tau\\ &= \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} g(\hat{x}) e^{-i 2\pi k \hat{x}} d\hat{x}\right) f(\tau) e^{-i 2\pi k \tau} d\tau\\ &= \hat{g}(k) \int_{-\infty}^{\infty} f(\tau) e^{-i 2\pi k \tau} d\tau\\ &= \hat{g}(k) \hat{f}(k) \end{split} \end{equation}

Frequency Convolution Theorem

For Fourier transform pairs f(x)f^(k)f(x) \leftrightarrow \hat{f}(k) and g(x)g^(k)g(x) \leftrightarrow \hat{g}(k), we have:

F1[f^(k)g^(k)]=f^(τ)g^(kτ)dτei2πxkdk=g^(kτ)ei2πxkdkf^(τ)dτ=g^(k^)ei2πx(k^+τ)d(k^+τ)f^(τ)dτ=(g^(k^)ei2πxk^dk^)f^(τ)ei2πxτdτ=g(x)f^(τ)ei2πxτdτ=g(x)f(x)\begin{equation} \begin{split} \mathcal{F}^{-1}\left[\hat{f}(k) \ast \hat{g}(k)\right] &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \hat{f}(\tau) \hat{g}(k-\tau) d\tau e^{i 2\pi x k} dk\\ &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \hat{g}(k-\tau) e^{i 2\pi x k} dk \hat{f}(\tau) d\tau\\ &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \hat{g}(\hat{k}) e^{i 2\pi x (\hat{k}+\tau)} d(\hat{k}+\tau) \hat{f}(\tau) d\tau\\ &= \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} \hat{g}(\hat{k}) e^{i 2\pi x \hat{k}} d\hat{k}\right) \hat{f}(\tau) e^{i 2\pi x \tau} d\tau\\ &= g(x) \int_{-\infty}^{\infty} \hat{f}(\tau) e^{i 2\pi x \tau} d\tau\\ &= g(x) f(x) \end{split} \end{equation}

Conguation

F[f(x)]=f(x)ei2πkxdx=f(x)ei2πkxdx=f(x)ei2π(k)xdx=f^(k)\begin{equation} \begin{split} \mathcal{F}\left[\overline{f(x)}\right] &= \int_{-\infty}^{\infty} \overline{f(x)} e^{-i 2\pi k x} dx \\ &= \overline{ \int_{-\infty}^{\infty} f(x) e^{i 2\pi k x} dx}\\ &= \overline{ \int_{-\infty}^{\infty} f(x) e^{-i 2\pi (-k) x} dx}\\ &= \overline{\hat{f}(-k)} \end{split} \end{equation}

If f(x)f(x) is a real-valued function, then f^(k)=f^(k)\hat{f}(-k)=\overline{\hat{f}(k)}, which is referred to as conjugate symmetric property. If f(x)f(x) is an imaginary-valued function, then f^(k)=f^(k)\hat{f}(-k)=- \overline{\hat{f}(k)}, which is referred to as conjugate anti-symmetric property. Same properties occur in the inverse Fourier transform.

Common FT Pairs

Time DomainFrequency DomainDescription
11δ(k)\delta(k)δ(k)=ei2πkxdx\delta(k) = \int_{-\infty}^{\infty} e^{-i 2\pi k x} dx
δ(x)\delta(x)111=δ(x)ei2πkxdx1 = \int_{-\infty}^{\infty} \delta(x) e^{-i 2\pi k x} dx
sgn(x)={1,x>00,x=01,x<0\mathrm{sgn}(x) = \left\{\begin{aligned} 1,x \gt 0\\ 0,x = 0\\-1,x \lt 0\\ \end{aligned}\right.1/(iπk)1/(i\pi k)sgn(x)\mathrm{sgn}(x) is the sign function
u(x)={1,x>01/2,x=00,x<0u(x) = \left\{\begin{aligned} 1,x \gt 0\\ 1/2,x = 0\\0,x \lt 0\\ \end{aligned}\right.12(δ(k)+1/(iπk))\frac{1}{2}\left(\delta(k) + 1/(i\pi k)\right)u(x)u(x) is the unit step function.
u(x)=12(1+sgn(x))u(x)=\frac{1}{2}(1+\mathrm{sgn}(x))
eiaxe^{i a x}δ(ka/(2π))\delta(k-a/(2\pi))Frequency Shifting
cos(ax)\mathrm{cos}(ax)12(δ(ka/(2π))+δ(k+a/(2π)))\frac{1}{2}\left(\delta(k-a/(2\pi)) + \delta(k+a/(2\pi))\right)cos(ax)=12(eiax+eiax)\mathrm{cos}(ax) =\\ \frac{1}{2}(e^{i a x} + e^{-i a x})
sin(ax)\mathrm{sin}(ax)12(δ(ka/(2π))δ(k+a/(2π)))\frac{1}{2}\left(\delta(k-a/(2\pi)) - \delta(k+a/(2\pi))\right)sin(ax)=12(eiaxeiax)\mathrm{sin}(ax) =\\ \frac{1}{2}(e^{i a x} - e^{-i a x})
rect(x)={1,x<1/21/2,x=1/20,x>1/2\mathrm{rect}(x)=\left\{\begin{aligned}1,\lvert x \rvert \lt 1/2\\ 1/2,\lvert x \rvert = 1/2\\ 0,\lvert x \rvert \gt 1/2\end{aligned}\right.sinc(k)=sin(πk)/(πk)\mathrm{sinc}(k) = \mathrm{sin}(\pi k)/(\pi k)rect(x)=u(x+1/2)u(x1/2)\mathrm{rect}(x) =\\ u(x+1/2)-u(x-1/2)
sinc(x)\mathrm{sinc}(x)rect(k)={1,k<1/21/2,k=1/20,k>1/2\mathrm{rect}(k)=\left\{\begin{aligned}1,\lvert k \rvert \lt 1/2\\ 1/2,\lvert k \rvert = 1/2\\ 0,\lvert k \rvert \gt 1/2\end{aligned}\right.
n=δ(xnΔx)\sum_{n=-\infty}^{\infty} \delta(x-n \Delta x)1Δxm=δ(km/Δx)\frac{1}{\Delta x} \sum_{m=-\infty}^{\infty} \delta(k-m/\Delta x)Comb function

Comb Function

A comb function (a.k.a sampling function, sometimes referred to as impulse sampling) is a periodic function with the formula:

SΔx(x)=n=δ(xnΔx)S_{\Delta{x}}(x) = \sum_{n=-\infty}^{\infty} \delta(x-n\Delta{x})

where Δx\Delta{x} is the given period. Fourier transform could be extended to [[generalized functions]] like δ(x)\delta(x), which makes it possible to bypass the limitation of absolute integrable property on f(x)f(x). The key is to decompose periodic functions into Fourier series and use additive property of Fourier transform .

The Fourier transform of SΔx(x)S_{\Delta{x}}(x) is:

F(SΔx(x))=n=δ(xnΔx)ei2πkxdx=n=δ(xnΔx)ei2πkxdx=n=ei2πknΔx\begin{equation} \begin{split} \mathcal{F}\left(S_{\Delta{x}}(x)\right) &= \int_{-\infty}^{\infty} \sum_{n=-\infty}^{\infty} \delta(x-n\Delta{x}) e^{-i 2\pi k x} dx\\ &= \sum_{n=-\infty}^{\infty} \int_{-\infty}^{\infty} \delta(x-n\Delta{x}) e^{-i 2\pi k x} dx\\ &= \sum_{n=-\infty}^{\infty} e^{-i 2\pi k n \Delta{x}}\\ \end{split} \end{equation}

It is not obvious to see what the transform is, but we can prove it with Fourier series. Note that SΔx(x)S_{\Delta{x}}(x) is a periodic function, its Fourier series is represented as:

cn=1ΔxΔxSΔx(x)ei2πnx/Δxdx=1ΔxΔx2Δx2m=δ(xmΔx)ei2πnx/Δxdx=1ΔxΔx2Δx2δ(x)ei2πnx/Δxdx=1Δxδ(x)ei2πnx/Δxdx=1ΔxSΔx(x)=n=cnei2πnx/Δx=1Δxn=ei2πnx/Δx\begin{equation} \begin{split} c_n &= \frac{1}{\Delta{x}} \int_{\Delta{x}} S_{\Delta{x}}(x) e^{-i 2\pi n x / \Delta{x}} dx\\ &= \frac{1}{\Delta{x}} \int_{-\frac{\Delta{x}}{2}}^{\frac{\Delta{x}}{2}} \sum_{m=-\infty}^{\infty} \delta(x-m\Delta{x}) e^{-i 2\pi n x / \Delta{x}} dx\\ &= \frac{1}{\Delta{x}} \int_{-\frac{\Delta{x}}{2}}^{\frac{\Delta{x}}{2}} \delta(x) e^{-i 2\pi n x / \Delta{x}} dx\\ &= \frac{1}{\Delta{x}} \int_{-\infty}^{\infty} \delta(x) e^{-i 2\pi n x / \Delta{x}} dx\\ &= \frac{1}{\Delta{x}}\\ S_{\Delta{x}}(x) &= \sum_{n=-\infty}^{\infty} c_n e^{i 2\pi n x / \Delta{x}}\\ &= \frac{1}{\Delta{x}} \sum_{n=-\infty}^{\infty} e^{i 2\pi n x / \Delta{x}} \end{split} \end{equation}

and Dirac delta function is expressed as:

δ(x)=ei2πxkdk=ei2πx(k)dk=ei2πxk^d(k^)=ei2πxk^d(k^)\begin{equation} \begin{split} \delta(x) &= \int_{-\infty}^{\infty} e^{i 2\pi x k} dk\\ &= \int_{-\infty}^{\infty} e^{-i 2\pi x (-k)} dk\\ &= \int_{\infty}^{-\infty} e^{-i 2\pi x \hat{k}} d(-\hat{k})\\ &= \int_{-\infty}^{\infty} e^{-i 2\pi x \hat{k}} d(\hat{k}) \end{split} \end{equation}

Now we can apply Fourier transform to SΔx(x)S_{\Delta{x}}(x):

F(SΔx(x))=n=cnei2πnx/Δxei2πkxdx=1Δxn=ei2π(n/Δxk)xdx=1Δxn=δ(kn/Δx)\begin{equation} \begin{split} \mathcal{F}\left(S_{\Delta{x}}(x)\right) &= \int_{-\infty}^{\infty} \sum_{n=-\infty}^{\infty} c_n e^{i 2\pi n x / \Delta{x}} e^{-i 2\pi k x} dx\\ &= \frac{1}{\Delta{x}} \sum_{n=-\infty}^{\infty} \int_{-\infty}^{\infty} e^{i 2\pi (n/\Delta{x} - k) x} dx\\ &= \frac{1}{\Delta{x}} \sum_{n=-\infty}^{\infty} \delta({k - n/\Delta{x}}) \end{split} \end{equation}

so F(SΔx(x))\mathcal{F}\left(S_{\Delta{x}}(x)\right) is also a periodic function with the period as 1/Δx1/\Delta{x}. Hence, we again apply Fourier series:

cn=Δx1ΔxF(SΔx(x))ei2πnkΔxdk=12Δx12Δxm=δ(km/Δx)ei2πnkΔxdk=12Δx12Δxδ(k)ei2πnkΔxdk=δ(k)ei2πnkΔxdk=1F(SΔx(x))=n=cnei2πnkΔx=n=ei2πnkΔx=n=ei2πnkΔx\begin{equation} \begin{split} c_n &= \Delta{x} \int_{\frac{1}{\Delta{x}}} \mathcal{F}\left(S_{\Delta{x}}(x)\right) e^{-i 2\pi n k \Delta{x}} dk\\ &= \int_{-\frac{1}{2\Delta{x}}}^{\frac{1}{2\Delta{x}}} \sum_{m=-\infty}^{\infty} \delta(k-m/\Delta{x}) e^{-i 2\pi n k \Delta{x}} dk\\ &= \int_{-\frac{1}{2\Delta{x}}}^{\frac{1}{2\Delta{x}}} \delta(k) e^{-i 2\pi n k \Delta{x}} dk\\ &= \int_{-\infty}^{\infty} \delta(k) e^{-i 2\pi n k \Delta{x}} dk\\ &= 1\\ \mathcal{F}\left(S_{\Delta{x}}(x)\right) &= \sum_{n=-\infty}^{\infty} c_n e^{i 2\pi n k \Delta{x}}\\ &= \sum_{n=-\infty}^{\infty} e^{i 2\pi n k \Delta{x}}\\ &= \sum_{n=-\infty}^{\infty} e^{-i 2\pi n k \Delta{x}} \end{split} \end{equation}

and we can see that why Fourier transform of a comb function is still a comb function.

FT of Periodic Functions

With the help of Dirac delta function, Fourier transform could also be used on periodic functions. Considering a periodic function fT(x)f_{T}(x) with period TT, we can write it as a Fourier series:

fT(x)=n=cnei2πnx/T\begin{equation} f_{T}(x) = \sum_{n=-\infty}^{\infty} c_n e^{i 2\pi n x/T} \end{equation}

Let’s compute the Fourier transform:

F(fT(x))=fT(x)ei2πkxdx=n=cnei2π(n/Tk)xdx=n=cnδ(n/Tk)=n=cnδ(kn/T)\begin{equation} \begin{split} \mathcal{F}(f_T(x)) &= \int_{-\infty}^{\infty} f_T(x) e^{-i 2\pi k x} dx\\ &= \sum_{n=-\infty}^{\infty} c_n \int_{-\infty}^{\infty} e^{i 2\pi (n/T-k) x} dx\\ &= \sum_{n=-\infty}^{\infty} c_n \delta(n/T - k)\\ &= \sum_{n=-\infty}^{\infty} c_n \delta(k - n/T) \end{split} \end{equation}

so the Fourier transform of a periodic function is a sum of delta functions at the Fourier series frequencies and the weight of each delta function is the Fourier series coefficient, as we proved in the Fourier transform of the comb function.

The inverse Fourier transform is:

F(n=cnδ(kn/T))=n=cnδ(kn/T)ei2πxkdk=n=cnδ(kn/T)ei2πxkdk=n=cnei2πxn/T=fT(x)\begin{equation} \begin{split} \mathcal{F}(\sum_{n=-\infty}^{\infty} c_n \delta(k - n/T)) &= \int_{-\infty}^{\infty} \sum_{n=-\infty}^{\infty} c_n \delta(k - n/T) e^{i 2\pi x k} dk\\ &= \sum_{n=-\infty}^{\infty} c_n \int_{-\infty}^{\infty} \delta(k - n/T) e^{i 2\pi x k} dk\\ &= \sum_{n=-\infty}^{\infty} c_n e^{i 2\pi x n/T}\\ &= f_T(x) \end{split} \end{equation}

Discrete-Time Fourier Transform

TL;DR

  • The discrete-time Fourier transform (DTFT) is a special case of the Fourier transform when the original function is sampled.
  • The frequency domain of DTFT is continuous but periodic, with a period of 1/Δx1/\Delta{x}, where Δx\Delta{x} is the sampling interval.
  • The DTFT of periodic sequence is a summation of weighted delta functions.

Definition

For a discrete sequence of real or complex values f[n]f[n] with all integers nn, the discrete-time Fourier transform is defined as:

f^dtft(k)=n=f[n]ei2πnkΔx\begin{equation} \hat{f}_{dtft}(k) = \sum_{n=-\infty}^{\infty} f[n] e^{-i2\pi n k \Delta{x}} \end{equation}

where 1Δx\frac{1}{\Delta{x}} is the sampling frequency in the time domain. This formula can be seen as a Fourier series (- and ++ signs are the same thing) and f^dtft(k)\hat{f}_{dtft}(k) is actually a periodic function with period 1/Δx1/\Delta{x}.

The inverse discrete-time Fourier transform is defined as:

f[n]=Δx1/Δxf^dtft(k)ei2πnkΔxdk\begin{equation} f[n] = \Delta{x} \int_{1/\Delta{x}} \hat{f}_{dtft}(k) e^{i 2\pi n k \Delta{x}} dk \end{equation}

note the integral is only evaluated in a period. Here we use Fdtft\mathcal{F}_{dtft} to represent the discrete-time Fourier transform (DTFT) and Fdtft1\mathcal{F}_{dtft}^{-1} to represent the inverse discrete-time Fourier transform (iDTFT).

Connection to the FT

Modern computers can only handle discrete values instead of continuous signals. The most basic discretization technique is sampling. Considering a continuous function f(x)f(x) and an uniform sampling pattern SΔx(x)=n=δ(xnΔx)S_{\Delta{x}}(x) = \sum_{n=-\infty}^{\infty} \delta(x-n\Delta{x}), which is the [[#Comb Function]] we described above, the sampling process can be simulated as:

fS(x)=f(x)SΔx(x)=n=f(x)δ(xnΔx)\begin{equation} \begin{split} f_S(x) &= f(x) S_{\Delta{x}}(x)\\ &= \sum_{n=-\infty}^{\infty} f(x)\delta(x-n\Delta{x}) \end{split} \end{equation}

The Fourier transform (using the definition) of the above function is:

f^S(k)=fS(x)ei2πkxdx=(n=f(x)δ(xnΔx))ei2πkxdx=n=(f(x)ei2πkxδ(xnΔx)dx)=n=f(nΔx)ei2πknΔx, f[n]=f(nΔx)=n=f[n]ei2πnkΔx=f^dtft(k)\begin{equation} \begin{split} \hat{f}_S(k) &= \int_{-\infty}^{\infty} f_S(x) e^{-i 2\pi k x} dx\\ &= \int_{-\infty}^{\infty} \left( \sum_{n=-\infty}^{\infty} f(x)\delta(x-n\Delta{x}) \right) e^{-i 2\pi k x} dx\\ &= \sum_{n=-\infty}^{\infty} \left( \int_{-\infty}^{\infty} f(x) e^{-i 2\pi k x} \delta(x-n\Delta{x}) dx\right)\\ &= \sum_{n=-\infty}^{\infty} f(n\Delta{x})e^{-i 2\pi k n\Delta{x}},\ f[n]=f(n\Delta{x})\\ &=\sum_{n=-\infty}^{\infty} f[n] e^{-i 2\pi n k \Delta{x}}\\ &= \hat{f}_{dtft}(k) \end{split} \end{equation}

which is the definition of discrete-time Fourier transform. The next step is to prove the correctness of the inverse discrete-time Fourier transform:

Δx1/Δxf^dtft(k)ei2πnkΔxdk=Δx12Δx12Δxf^dtft(k)ei2πnkΔxdk=Δx12Δx12Δxf^S(k)ei2πnkΔxdk=Δx12Δx12Δx[m=f[m]ei2πmkΔx]ei2πnkΔxdk=Δxm=f[m][12Δx12Δxei2π(nm)kΔxdk]=Δxm=f[m][1i2π(nm)Δxei2π(nm)kΔx12Δx12Δx]=Δxm=f[m][1Δxsin(π(nm))π(nm)]=f[n]\begin{equation} \begin{split} \Delta{x} \int_{1/\Delta{x}} \hat{f}_{dtft}(k) e^{i 2\pi n k \Delta{x}} dk &= \Delta{x} \int_{-\frac{1}{2\Delta{x}}}^{\frac{1}{2\Delta{x}}} \hat{f}_{dtft}(k) e^{i 2\pi n k \Delta{x}} dk\\ &= \Delta{x} \int_{-\frac{1}{2\Delta{x}}}^{\frac{1}{2\Delta{x}}} \hat{f}_{S}(k) e^{i 2\pi n k \Delta{x}} dk\\ &=\Delta{x} \int_{-\frac{1}{2\Delta{x}}}^{\frac{1}{2\Delta{x}}} \left[\sum_{m=-\infty}^{\infty} f[m] e^{-i 2\pi m k \Delta{x}}\right] e^{i 2\pi n k \Delta{x}} dk\\ &=\Delta{x} \sum_{m=-\infty}^{\infty} f[m] \left[ \int_{-\frac{1}{2\Delta{x}}}^{\frac{1}{2\Delta{x}}} e^{i 2\pi (n-m) k \Delta{x}} dk \right]\\ &= \Delta{x} \sum_{m=-\infty}^{\infty} f[m] \left[ \left. \frac{1}{i 2\pi (n-m) \Delta{x}} e^{i 2\pi (n-m) k \Delta{x}} \right|_{-\frac{1}{2\Delta{x}}}^{\frac{1}{2\Delta{x}}} \right]\\ &= \Delta{x} \sum_{m=-\infty}^{\infty} f[m] \left[\frac{1}{\Delta{x}} \frac{\sin(\pi(n-m))}{\pi (n-m)}\right]\\ &= f[n] \end{split} \end{equation}

note that sinc(x)=sin(πx)πx\mathrm{sinc}(x)=\frac{\sin(\pi x)}{\pi x} only has a nonzero value 1 at x=0x=0 and 0 for other integers.

It is clear that f^S(k)\hat{f}_S(k) is a periodic function with period 1/Δx1/\Delta{x}, we can see that from the convolution theorem of the Fourier transform:

f^S(k)=F[f(x)SΔx(x)]=F[f(x)]F[SΔx(x)]=f^(k)S^Δx(k)=f^(k)1Δxn=δ(kn/Δx)=1Δxn=f^(k)δ(kn/Δx)=1Δxn=f^(τ)δ(kτn/Δx)dτ=1Δxn=f^(τ)δ((τk+n/Δx))dτ=1Δxn=f^(τ)δ(τ(kn/Δx))dτ=1Δxn=f^(kn/Δx)\begin{equation} \begin{split} \hat{f}_S(k) &= \mathcal{F}\left[f(x)S_{\Delta{x}}(x)\right]\\ &= \mathcal{F}\left[f(x)\right] \ast \mathcal{F}\left[S_{\Delta{x}}(x)\right]\\ &= \hat{f}(k) \ast \hat{S}_{\Delta{x}}(k)\\ &= \hat{f}(k) \ast \frac{1}{\Delta{x}} \sum_{n=-\infty}^{\infty} \delta(k - n/\Delta{x})\\ &= \frac{1}{\Delta{x}} \sum_{n=-\infty}^{\infty} \hat{f}(k) \ast \delta(k - n/\Delta{x})\\ &= \frac{1}{\Delta{x}} \sum_{n=-\infty}^{\infty} \int_{-\infty}^{\infty} \hat{f}(\tau) \delta(k - \tau - n/\Delta{x}) d\tau\\ &= \frac{1}{\Delta{x}} \sum_{n=-\infty}^{\infty} \int_{-\infty}^{\infty} \hat{f}(\tau) \delta(-(\tau - k + n/\Delta{x})) d\tau\\ &= \frac{1}{\Delta{x}} \sum_{n=-\infty}^{\infty} \int_{-\infty}^{\infty} \hat{f}(\tau) \delta(\tau - (k - n/\Delta{x})) d\tau\\ &= \frac{1}{\Delta{x}} \sum_{n=-\infty}^{\infty} \hat{f}(k-n/\Delta{x})\\ \end{split} \end{equation}

so the discrete-time Fourier transform of f[n]f[n] is a summation of shifted replicates of f^(k)\hat{f}(k) in terms of a frequency period 1/Δx1/\Delta{x}.

Properties

Common DTFT Pairs

DTFT of Periodic Sequences

Considering f[n]f[n] is an NN-periodic sequence, we can write f[n]f[n] as fS(x)=fT(x)SΔx(x)f_S(x) = f_T(x) S_{\Delta{x}}(x), where NΔx=TN\Delta{x}=T. fS(x)f_S(x) is also a periodic function with a period TT:

fS(x+T)=fT(x+T)SΔx(x+T)=fT(x)SΔx(x+NΔx)=fT(x)SΔx(x)=fS(x)f[n+N]=fS((n+N)Δx)=fS(nΔx+T)=fS(nΔx)=f[n]\begin{equation} \begin{split} f_{S}(x+T) &= f_{T}(x+T) S_{\Delta{x}}(x+T)\\ &= f_T(x) S_{\Delta{x}}(x+N\Delta{x})\\ &= f_T(x) S_{\Delta{x}}(x)\\ &= f_S(x)\\ f[n+N] &= f_S((n+N)\Delta{x})\\ &= f_S(n\Delta{x}+T)\\ &= f_S(n\Delta{x})\\ &= f[n] \end{split} \end{equation}

For delta function, we also know that:

abf(x)δ(xx0)dx==f(x)(u(xa)u(xb))δ(xx0)dx=f(x0)(u(x0a)u(x0b))={f(x0)x0(a,b)f(x0)/2x0=a,b0else\begin{equation} \begin{split} \int_{a}^{b} f(x) \delta(x-x_0) dx &=\\ &= \int_{-\infty}^{\infty} f(x) \left(u(x-a) - u(x-b)\right) \delta(x-x_0) dx\\ &= f(x_0)\left(u(x_0-a) - u(x_0-b)\right)\\ &= \begin{cases} f(x_0) & x_0 \in (a, b)\\ f(x_0)/2 & x_0=a,b\\ 0 & \text{else} \end{cases} \end{split} \end{equation}

where u(x)u(x) is the unit step function.

Remember that Fourier transform of a periodic function is a summation of delta functions weighted by the Fourier coefficients:

cm=1TTfS(x)ei2πmx/Tdx=1TΔx2TΔx2fT(x)SΔx(x)ei2πmx/Tdx=1TΔx2TΔx2fT(x)n=δ(xnΔx)ei2πmx/Tdx=1TΔx2TΔx2fT(x)n=0N1δ(xnΔx)ei2πmx/Tdx=1Tn=0N1Δx2TΔx2fT(x)ei2πmx/Tδ(xnΔx)dx=1Tn=0N1fT(nΔx)ei2πnmΔx/T=1Tn=0N1fT(nΔx)ei2πnmΔx/(NΔx))=1Tn=0N1fT(nΔx)ei2πnm/N)=1Tn=0N1f[n]ei2πnm/Nf^dtft(k)=F(fS(x))=m=cmδ(km/T)=1Tm=(n=0N1f[n]ei2πnm/N)δ(km/T)=1Tm=f^[m]δ(km/T)=1NΔxm=f^[m]δ(kmNΔx)\begin{equation} \begin{split} c_m &= \frac{1}{T} \int_{T} f_{S}(x) e^{-i 2\pi m x / T} dx\\ &= \frac{1}{T} \int_{-\frac{-\Delta{x}}{2}}^{T-\frac{-\Delta{x}}{2}} f_T(x) S_{\Delta{x}}(x) e^{-i 2\pi m x / T} dx\\ &= \frac{1}{T} \int_{-\frac{-\Delta{x}}{2}}^{T-\frac{-\Delta{x}}{2}} f_T(x) \sum_{n=-\infty}^{\infty} \delta(x-n\Delta{x}) e^{-i 2\pi m x / T} dx\\ &= \frac{1}{T} \int_{-\frac{-\Delta{x}}{2}}^{T-\frac{-\Delta{x}}{2}} f_T(x) \sum_{n=0}^{N-1} \delta(x-n\Delta{x}) e^{-i 2\pi m x / T} dx\\ &= \frac{1}{T} \sum_{n=0}^{N-1} \int_{-\frac{-\Delta{x}}{2}}^{T-\frac{-\Delta{x}}{2}} f_T(x) e^{-i 2\pi m x / T} \delta(x-n\Delta{x}) dx\\ &= \frac{1}{T} \sum_{n=0}^{N-1} f_T(n\Delta{x}) e^{-i 2\pi n m \Delta{x} / T}\\ &= \frac{1}{T} \sum_{n=0}^{N-1} f_T(n\Delta{x}) e^{-i 2\pi n m \Delta{x} / (N\Delta{x}))}\\ &= \frac{1}{T} \sum_{n=0}^{N-1} f_T(n\Delta{x}) e^{-i 2\pi n m / N)}\\ &= \frac{1}{T} \sum_{n=0}^{N-1} f[n] e^{-i 2\pi n m / N}\\ \hat{f}_{dtft}(k) &= \mathcal{F}(f_S(x))\\ &= \sum_{m=-\infty}^{\infty} c_m \delta(k - m/T)\\ &= \frac{1}{T} \sum_{m=-\infty}^{\infty} \left(\sum_{n=0}^{N-1} f[n] e^{-i 2\pi n m / N}\right) \delta(k - m/T)\\ &= \frac{1}{T} \sum_{m=-\infty}^{\infty} \hat{f}[m] \delta(k - m/T)\\ &= \frac{1}{N\Delta{x}} \sum_{m=-\infty}^{\infty} \hat{f}[m] \delta(k - \frac{m}{N\Delta{x}}) \end{split} \end{equation}

Note we use a trick with a range between Δx2-\frac{-\Delta{x}}{2} and TΔx2T-\frac{-\Delta{x}}{2}to make sure only N points are available for δ(xmΔx)\delta(x-m\Delta{x}) in the integral equation, and introduce a new symbol f^[m]=n=0N1f[n]ei2πnm/N\hat{f}[m] = \sum_{n=0}^{N-1} f[n] e^{-i 2\pi n m / N}, which is referred to as the discrete Fourier transform (explained latter). So the discrete-time Fourier transform of a periodic sequence can be seen as the Fourier transform of a periodic function with exact sampling interval (Δx=TN\Delta x=\frac{T}{N}). The result is a summation of delta functions, where the weights are the discrete Fourier transform values. f^dtft(k)\hat{f}_{dtft}(k) converges to zero everywhere except at integer multiples of 1T\frac{1}{T}, known as harmonic frequencies. And the period 1/Δx1/\Delta{x} still holds for f^dtft(k)\hat{f}_{dtft}(k):

f^dtft(k+1/Δx)=1NΔxm=f^[m]δ(k+1/Δxm/(NΔx))=1NΔxm=f^[m]δ(k(mN)/(NΔx)), n=mN=1NΔxn=f^[n+N]δ(kn/(NΔx))=1NΔxn=f^[n]δ(kn/(NΔx))=f^dtft(k)\begin{equation} \begin{split} \hat{f}_{dtft}(k + 1/\Delta{x}) &= \frac{1}{N\Delta{x}} \sum_{m=-\infty}^{\infty} \hat{f}[m] \delta(k + 1/\Delta{x} - m/(N\Delta{x}))\\ &= \frac{1}{N\Delta{x}} \sum_{m=-\infty}^{\infty} \hat{f}[m] \delta(k - (m-N)/(N\Delta{x})),\ n=m-N\\ &= \frac{1}{N\Delta{x}} \sum_{n=-\infty}^{\infty} \hat{f}[n+N] \delta(k - n/(N\Delta{x}))\\ &= \frac{1}{N\Delta{x}} \sum_{n=-\infty}^{\infty} \hat{f}[n] \delta(k - n/(N\Delta{x}))\\ &= \hat{f}_{dtft}(k) \end{split} \end{equation}

Substituting f^dtft(k)\hat{f}_{dtft}(k) into the inverse discrete-time Fourier transform formula (note that ks=1Δxk_s=\frac{1}{\Delta{x}} is the sampling frequency), we can verify that:

1ksksf^dtft(k)ei2πnkksdk=1ksks2Nksks2NksNm=f^dft[m]δ(kmks/N)ei2πnkksdk=1Nks2Nksks2Nm=0N1f^dft[m]δ(kmks/N)ei2πnkksdk=1Nm=0N1ks2Nksks2Nf^dft[m]ei2πnkksδ(kmks/N)dk=1Nm=0N1f^dft[m]ei2πnmN=1Nm=0N1l=0N1f[l]ei2πmlNei2πnmN=1Nl=0N1f[l]m=0N1ei2π(nl)mN=1Nl=0N1f[l][eiπN1N(nl)sin(π(nl))sin(πnlN)]=1Nl=0N1f[l]g[l]=f[n]\begin{equation} \begin{split} \frac{1}{k_s} \int_{k_s} \hat{f}_{dtft}(k) e^{i 2\pi n \frac{k}{k_s}} dk &= \frac{1}{k_s} \int_{-\frac{k_s}{2N}}^{k_s - \frac{k_s}{2N}} \frac{k_s}{N} \sum_{m=-\infty}^{\infty} \hat{f}_{dft}[m] \delta(k - m k_s / N) e^{i 2\pi n \frac{k}{k_s}} dk\\ &= \frac{1}{N} \int_{-\frac{k_s}{2N}}^{k_s - \frac{k_s}{2N}} \sum_{m=0}^{N-1} \hat{f}_{dft}[m] \delta(k - m k_s / N) e^{i 2\pi n \frac{k}{k_s}} dk\\ &= \frac{1}{N} \sum_{m=0}^{N-1} \int_{-\frac{k_s}{2N}}^{k_s - \frac{k_s}{2N}} \hat{f}_{dft}[m] e^{i 2\pi n \frac{k}{k_s}} \delta(k - m k_s / N) dk\\ &= \frac{1}{N} \sum_{m=0}^{N-1} \hat{f}_{dft}[m] e^{i 2\pi n \frac{m}{N}} \\ &= \frac{1}{N} \sum_{m=0}^{N-1} \sum_{l=0}^{N-1} f[l] e^{-i 2\pi m \frac{l}{N}} e^{i 2\pi n \frac{m}{N}}\\ &= \frac{1}{N} \sum_{l=0}^{N-1} f[l] \sum_{m=0}^{N-1} e^{i 2\pi (n-l) \frac{m}{N}}\\ &= \frac{1}{N} \sum_{l=0}^{N-1} f[l] \left[e^{i \pi \frac{N-1}{N} (n-l)} \frac{\sin(\pi (n-l))}{\sin(\pi \frac{n-l}{N})}\right]\\ &= \frac{1}{N} \sum_{l=0}^{N-1} f[l] g[l]\\ &= f[n] \end{split} \end{equation}

where g[l]=eiπN1N(nl)sin(π(nl))sin(πnlN)g[l]=e^{i \pi \frac{N-1}{N} (n-l)} \frac{\sin(\pi (n-l))}{\sin(\pi \frac{n-l}{N})} only has a value NN when l=nl=n otherwise 0.

Discrete-Time Fourier Series

Definition

For a N-periodic sequence f[n]f[n], it has the following series representation:

cm=n=0N1f[n]ei2πmnNf[n]=1Nm=0N1cmei2πnmN\begin{equation} \begin{split} c_m &= \sum_{n=0}^{N-1} f[n] e^{-i2\pi\frac{mn}{N}}\\ f[n] &= \frac{1}{N} \sum_{m=0}^{N-1} c_m e^{i2\pi \frac{nm}{N}} \end{split} \end{equation}

Here cmc_m’s are the DTFS coefficients and they are periodic with period NN. The series representation of f[n]f[n] is called the inverse DTFS.

Connection to the DTFT

As we proved in DTFT of Periodic Sequences, DTFS is actually a discretized version of DTFT of periodic sequences. Given a signal f(x)f(x) with period TT and its N-periodic sequence f[n]f[n], we first compute its DTFS coefficients cmc_m, then the DTFT f^dtft(k)\hat{f}_{dtft}(k) of f[n]f[n] is represented by:

f^dtft(k)=1Tm=cmδ(km/T)\begin{equation} \begin{split} \hat{f}_{dtft}(k) &= \frac{1}{T} \sum_{m=-\infty}^{\infty} c_m \delta(k - m/T)\\ \end{split} \end{equation}

The original sequence f[n]f[n] can be recovered from the inverse DTFT, which is also the inverse DTFS.

Discrete Fourier Transform

TL;DR

I found that Professor Jeffery Fessler’s note gives a clear picture of relations of different transforms. In general, the DFT is a simpified way to transform sampled time-domain sequences to sampled frequency-domain sequences.

Definition

For a sequence of NN complex numbers {f[n]}n=0N1{\{f[n]\}}_{n=0}^{N-1}, the discrete Fourier Transform transforms the sequence into another sequence of complex numbers {f^[m]}m=0N1{\{\hat{f}[m]\}}_{m=0}^{N-1}:

f^[m]=n=0N1f[n]ei2πknN\begin{equation} \hat{f}[m] = \sum_{n=0}^{N-1} f[n] e^{-i 2\pi k \frac{n}{N}} \end{equation}

The inverse discrete Fourier transform is given by:

f[n]=1Nm=0N1f^[m]ei2πnmN\begin{equation} f[n] = \frac{1}{N} \sum_{m=0}^{N-1} \hat{f}[m] e^{i 2\pi n \frac{m}{N}} \end{equation}

Connection to the DTFT and DTFS

The DFT can be motivated by the sampling of the DTFT. Consider sampling the DTFT with Δk\Delta{k} sampling interval such that one period was sampled with exactly NN points (NΔk=1/ΔxN \Delta{k} = 1/\Delta{x}):

f^dtft[m]=f^dtft(mΔk)=n=f[n]ei2πnΔxmΔk=n=f[n]ei2πnmN\begin{equation} \begin{split} \hat{f}_{dtft}[m] &= \hat{f}_{dtft}(m\Delta{k})\\ &= \sum_{n=-\infty}^{\infty} f[n] e^{-i2\pi n\Delta{x} m\Delta{k}}\\ &= \sum_{n=-\infty}^{\infty} f[n] e^{-i2\pi \frac{nm}{N}} \end{split} \end{equation}

Let’s break f[n]f[n] into NN-length segments such as f[0]...f[N1]f[0] ... f[N-1], f[N]...f[2N1]f[N] ... f[2N-1], let n=ljNn=l-jN where l[0,N1]l \in [0, N-1] and j[,]j \in [-\infty, \infty], then f^dtft[m]\hat{f}_{dtft}[m] can be redefined with NN-point periodic superposition fps[l]=j=f[ljN]f_{ps}[l] = \sum_{j=-\infty}^{\infty} f[l-jN]:

f^dtft[m]=n=f[n]ei2πnmN=j=l=0N1f[ljN]ei2π(ljN)mN=j=l=0N1f[ljN]ei2πlmN=l=0N1(j=f[ljN])ei2πlmN=l=0N1fps[l]ei2πlmN\begin{equation} \begin{split} \hat{f}_{dtft}[m] &= \sum_{n=-\infty}^{\infty} f[n] e^{-i2\pi \frac{nm}{N}}\\ &= \sum_{j=-\infty}^{\infty} \sum_{l=0}^{N-1} f[l-jN] e^{-i2\pi (l-jN) \frac{m}{N}}\\ &= \sum_{j=-\infty}^{\infty} \sum_{l=0}^{N-1} f[l-jN] e^{-i2\pi l \frac{m}{N}}\\ &= \sum_{l=0}^{N-1} \left(\sum_{j=-\infty}^{\infty} f[l-jN]\right) e^{-i2\pi l \frac{m}{N}}\\ &= \sum_{l=0}^{N-1} f_{ps}[l] e^{-i2\pi l \frac{m}{N}} \end{split} \end{equation}

Obviously, fps[l]f_{ps}[l] is a NN-periodic sequence. Since fps[l]f_{ps}[l] is NN-periodic, it can be represented with the DTFS:

cm=l=0N1fps[l]ei2πlmNfps[l]=1Nm=0N1cmei2πmlN\begin{equation} \begin{split} c_m &= \sum_{l=0}^{N-1} f_{ps}[l] e^{-i 2\pi \frac{lm}{N}}\\ f_{ps}[l] &= \frac{1}{N} \sum_{m=0}^{N-1} c_m e^{i 2\pi \frac{ml}{N}} \end{split} \end{equation}

Comparing the DTFS coefficients and the above DTFT samples, we see that:

cm=f^dtft[m]\begin{equation} \begin{split} c_m &= \hat{f}_{dtft}[m] \end{split} \end{equation}

Thus, we can recover the periodic sequence fps[l]f_{ps}[l] from those DTFT samples with the inverse DTFS:

fps[l]=1Nm=0N1f^dtft[m]ei2πmlN\begin{equation} \begin{split} f_{ps}[l] &= \frac{1}{N} \sum_{m=0}^{N-1} \hat{f}_{dtft}[m] e^{i 2\pi \frac{ml}{N}} \end{split} \end{equation}

However, this recovery does not ensure that we can recover the original sequence f[n]f[n] with those DTFT samples. fps[l]f_{ps}[l] is a sum of shifted replicates of f[n]f[n]. Thus there is no perfect reconstruction for non time-limited sequences since time-domain replicates overlap and aliasing occurs.

There is a special case where time-domain replicates do not overlap. Considering a time-limited sequence f[n]f[n] with duration LL which it has nonzero values only in the interval 0,...,L10,..., L-1. If NLN \ge L, then there is no overlap in the replicates. The original sequence f[n]f[n] can be recovered from fps[l]f_{ps}[l]:

f[n]={fps[n]n[0,L1)0otherwise\begin{equation} f[n] = \begin{cases} f_{ps}[n] & n \in [0, L-1)\\ 0 & \text{otherwise} \end{cases} \end{equation}

In fact, if f[n]f[n] is time-limited, the DTFT samples simplifies to a limited summation:

f^[m]=f^dtft[m]=n=0L1f[n]ei2πnmM=n=0N1f[n]ei2πnmM\begin{equation} \begin{split} \hat{f}[m] &= \hat{f}_{dtft}[m]\\ &= \sum_{n=0}^{L-1} f[n] e^{-i2\pi n \frac{m}{M}}\\ &= \sum_{n=0}^{N-1} f[n] e^{-i2\pi n \frac{m}{M}} \end{split} \end{equation}

where f[n]=0f[n]=0 for nLn \ge L and the above formula is called DFT and f[n]f[n] can be recovered from the inverse DFT formula:

f[n]={1Nm=0N1f^[m]ei2πmnNn=0,...,N10otherwise\begin{equation} \begin{split} f[n] = \begin{cases} \frac{1}{N} \sum_{m=0}^{N-1} \hat{f}[m] e^{i 2\pi \frac{mn}{N}} & n=0, ..., N-1\\ 0 & \text{otherwise} \end{cases} \end{split} \end{equation}

Properties

TODO

Common DFT Pairs

TODO

Non-uniform Fast Fourier Transform

TODO